[1] | Meuwissen THE, Hayes BJ, Goddard ME. Prediction of total genetic value using genome-wide dense marker maps. Genetics, 2001, 157(4): 1819-1829. | [2] | Goddard ME, Hayes BJ. Mapping genes for complex traits in domestic animals and their use in breeding programmes. Nat Rev Genet, 2009, 10(6): 381-391. | [3] | Olson KM, VanRaden PM, Tooker ME, Cooper TA. Differences among methods to validate genomic evaluations for dairy cattle. J Dairy Sci, 2011, 94(5): 2613-2620. | [4] | Pszczola M, Calus MPL. Updating the reference population to achieve constant genomic prediction reliability across generations. Animal, 2016, 10(6): 1018-1024. | [5] | VanRaden PM, Van Tassell CP, Wiggans GR, Sonstegard TS, Schnabel RD, Taylor JF, Schenkel FS. Invited review: Reliability of genomic predictions for North American Holstein bulls. J Dairy Sci, 2009, 92(1): 16-24. | [6] | Spelman RJ, Hayes BJ, Berry DP. Use of molecular technologies for the advancement of animal breeding: genomic selection in dairy cattle populations in Australia, Ireland and New Zealand. Anim Prod Sci, 2013, 53(9): 869-875. | [7] | Ostersen T, Christensen OF, Henryon M, Nielsen B, Su GS, Madsen P. Deregressed EBV as the response variable yield more reliable genomic predictions than traditional EBV in pure-bred pigs. Genet Sel Evol, 2011, 43: 38. | [8] | Tribout T, Larzul C, Phocas F. Efficiency of genomic selection in a purebred pig male line. J Anim Sci, 2012, 90(12): 4164-4176. | [9] | Liu TF, Qu H, Luo CL, Li XW, Shu DM, Lund MS, Su GS. Genomic selection for the improvement of antibody response to newcastle disease and avian influenza virus in chickens. PLoS One, 2014, 9(11): e112685. | [10] | Wolc A, Zhao HH, Arango J, Settar P, Fulton JE, O'Sullivan NP, Preisinger R, Stricker C, Habier D, Fernando RL, Garrick DJ, Lamont SJ, Dekkers JCM. Response and inbreeding from a genomic selection experiment in layer chickens. Genet Sel Evol, 2015, 47: 59. | [11] | Palaiokostas C, Ferraresso S, Franch R, Houston RD, Bargelloni L. Genomic prediction of resistance to pasteurellosis in gilthead sea bream (. Sparus aurata) using 2b- RAD sequencing. G3 (Bethesda), 2016, 6(11): 3693-3700. | [12] | Dou JZ, Li X, Fu Q, Jiao WQ, Li YP, Li TQ, Wang YF, Hu XL, Wang S, Bao ZM. Evaluation of the 2b-RAD method for genomic selection in scallop breeding. Sci Rep, 2016, 6: 19244. | [13] | Beyene Y, Semagn K, Mugo S, Tarekegne A, Babu R, Meisel B, Sehabiague P, Makumbi D, Magorokosho C, Oikeh S, Gakunga J, Vargas M, Olsen M, Prasanna BM, Banziger M, Crossa J. Genetic gains in grain yield through genomic selection in eight Bi-parental maize populations under drought stress. Crop Sci, 2015, 55(1): 154-163. | [14] | Zhao YS, Gowda M, Liu WX, Würschum T, Maurer HP, Longin FH, Ranc N, Reif J. Accuracy of genomic selection in European maize elite breeding populations. Theor Appl Genet, 2012, 124(4): 769-776. | [15] | Meuwissen TH. Accuracy of breeding values of 'unrelated' individuals predicted by dense SNP genotyping. Genet Sel Evol, 2009, 41(1): 35. | [16] | VanRaden PM. Efficient methods to compute genomic predictions. J Dairy Sci, 2008, 91(11): 4414-4423. | [17] | Da Y. Multi-allelic haplotype model based on genetic partition for genomic prediction and variance component estimation using SNP markers. BMC Genet, 2015, 16: 144. | [18] | Ramos AM, Crooijmans RPMA, Affara NA, Amaral AJ, Archibald AL, Beever JE, Bendixen C, Churcher C, Clark R, Dehais P, Hansen MS, Hedegaard J, Hu ZL, Kerstens HH, Law AS, Megens HJ, Milan D, Nonneman DJ, Rohrer GA, Rothschild MF, Smith TPL, Schnabel RD, Van Tassell CP, Taylor JF, Wiedmann RT, Schook LB, Groenen MAM. Design of a high density SNP genotyping assay in the pig using SNPs identified and characterized by next generation sequencing technology. PLoS One, 2009, 4(8): e6524. | [19] | Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML. Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet, 2011, 12(7): 499-510. | [20] | Van Orsouw NJ, Hogers RCJ, Janssen A, Yalcin F, Snoeijers S, Verstege E, Schneiders H, Van Der Poel H, Van Oeveren J, Verstegen H, Van Eijk MJT. Complexity reduction of polymorphic sequences (CRoPS): A novel approach for large-scale polymorphism discovery in complex genomes. PLoS One, 2007, 2(11): e1172. | [21] | Van Tassell CP, Smith TPL, Matukumalli LK, Taylor JF, Schnabel RD, Lawley CT, Haudenschild CD, Moore SS, Warren WC, Sonstegard TS. SNP discovery and allele frequency estimation by deep sequencing of reduced representation libraries. Nat Methods, 2008, 5(3): 247-252. | [22] | Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, Selker EU, Cresko WA, Johnson EA. Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One, 2008, 3(10): e3376. | [23] | Andolfatto P, Davison D, Erezyilmaz D, Hu TT, Mast J, Sunayama-Morita T, Stern DL. Multiplexed shotgun genotyping for rapid and efficient genetic mapping. Genome Res, 2011, 21(4): 610-617. | [24] | Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE. A robust, Simple Genotyping-by-Sequencing (GBS) approach for high diversity species. PLoS One, 2011, 6(5): e19379. | [25] | Rife TW, Wu SY, Bowden RL, Poland JA. Spiked GBS: a unified, open platform for single marker genotyping and whole-genome profiling. BMC Genomics, 2015, 16: 248. | [26] | Poland JA, Brown PJ, Sorrells ME, Jannink JL. Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS One, 2012, 7(2): e32253. | [27] | Peterson BK, Weber JN, Kay EH, Fisher HS, Hoekstra HE. Double digest RADseq: An inexpensive method for de novo snp discovery and genotyping in model and non-model species. PLoS One, 2012, 7(5): e37135. | [28] | Wang S, Meyer E, McKay JK, Matz MV. 2b-RAD: a simple and flexible method for genome-wide genotyping. Nat Methods, 2012, 9(8): 808-810. | [29] | Chen Q, Ma YF, Yang YM, Chen ZL, Liao RR, Xie XX, Wang Z, He PF, Tu YY, Zhang XZ, Yang CS, Yang HJ, Yu FQ, Zheng YM, Zhang ZW, Wang QS, Pan YC. Genotyping by genome reducing and sequencing for outbred animals. PLoS One, 2013, 8(7): e67500. | [30] | Jiang ZH, Wang HY, Michal JJ, Zhou X, Liu B, Woods LCS, Fuchs RA. Genome wide sampling sequencing for SNP genotyping: Methods, challenges and future development. Int J Biol Sci, 2016, 12(1): 100-108. | [31] | Hickey JM. Sequencing millions of animals for genomic selection 2.0. J Anim Breed Genet, 2013, 130(5): 331-332. | [32] | DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philippakis AA, Del Angel G, Rivas MA, Hanna M, McKenna A, Fennell TJ, Kernytsky AM, Sivachenko AY, Cibulskis K, Gabriel SB, Altshuler D, Daly MJ. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet, 2011, 43(5): 491-498. | [33] | Gorjanc G, Battagin M, Dumasy JF, Antolin R, Gaynor RC, Hickey JM. Prospects for cost-effective genomic selection via accurate within-family imputation. Crop Sci, 2017, 57(1): 216-228. | [34] | Habier D, Fernando RL, Kizilkaya K, Garrick DJ. Extension of the bayesian alphabet for genomic selection. BMC Bioinformatics, 2011, 12: 186. | [35] | Gianola D, De Los Campos G, Hill WG, Manfredi E, Fernando R. Additive genetic variability and the bayesian alphabet. Genetics, 2009, 183(1): 347-363. | [36] | Colombani C, Legarra A, Fritz S, Guillaume F, Croiseau P, Ducrocq V, Robert-Granié C. Application of Bayesian least absolute shrinkage and selection operator (LASSO) and BayesCπ methods for genomic selection in French Holstein and Montbéliarde breeds. J Dairy Sci, 2013, 96(1):575-591. | [37] | Hastie T, Tibshirani R. Bayesian backfitting (with comments and a rejoinder by the authors). Stat Sci, 2000, 15(3): 196-223. | [38] | Legarra A, Robert-Granié C, Croiseau P, Guillaume F, Fritz S. Improved Lasso for genomic selection. Genet Res, 2011, 93(1): 77-87. | [39] | Xu S. An expectation-maximization algorithm for the Lasso estimation of quantitative trait locus effects. Heredity, 2010, 105(5): 483-494. | [40] | De Los Campos G, Naya H, Gianola D, Crossa J, Legarra A, Manfredi E, Weigel K, Cotes JM. Predicting quantitative traits with regression models for dense molecular markers and pedigree. Genetics, 2009, 182(1): 375-385. | [41] | Croiseau P, Legarra A, Guillaume F, Fritz S, Baur A, Colombani C, Robert-Granié C, Boichard D, Ducrocq V. Fine tuning genomic evaluations in dairy cattle through SNP pre-selection with the Elastic-Net algorithm. Genet Res, 2011, 93(6): 409-417. | [42] | Yi NJ, Xu SZ. Bayesian LASSO for quantitative trait loci mapping. Genetics, 2008, 179(2): 1045-1055. | [43] | Meuwissen TH, Solberg TR, Shepherd R, Woolliams JA. A fast algorithm for BayesB type of prediction of genome- wide estimates of genetic value. Genet Sel Evol, 2009, 41: 2. | [44] | Hayashi T, Iwata H. EM algorithm for Bayesian estimation of genomic breeding values. BMC Genet, 2010, 11: 3. | [45] | Sun W, Ibrahim JG, Zou F. Genomewide multiple-loci mapping in experimental crosses by iterative adaptive penalized regression. Genetics, 2010, 185(1): 349-529. | [46] | Shepherd RK, Meuwissen TH, Woolliams JA. Genomic selection and complex trait prediction using a fast EM algorithm applied to genome-wide markers. BMC Bioinformatics, 2010, 11: 529. | [47] | Mutshinda CM, Sillanp?? MJ. Extended bayesian LASSO for multiple quantitative trait loci mapping and unobserved phenotype prediction. Genetics, 2010, 186(3): 1067-1075. | [48] | Br?ndum RF, Su GS, Lund MS, Bowman PJ, Goddard ME, Hayes BJ. Genome position specific priors for genomic prediction. BMC Genomics, 2012, 13: 543. | [49] | Wang CL, Ding XD, Wang JY, Liu JF, Fu WX, Zhang Z, Yin ZJ, Zhang Q. Bayesian methods for estimating GEBVs of threshold traits. Heredity, 2013, 110(3): 213-219. | [50] | Ricard A, Danvy S, Legarra A. Computation of deregressed proofs for genomic selection when own phenotypes exist with an application in French show-jumping horses. J Anim Sci, 2013, 91(3): 1076-1085. | [51] | Da Y, Wang CK, Wang SW, Hu G. Mixed model methods for genomic prediction and variance component estimation of additive and dominance effects using SNP markers. PLoS One, 2014, 9(1): e87666. | [52] | Azevedo CF, De Resende MDV, Silva FF, Viana JMS, Valente MSF, Resende MFR Jr, Mu?oz P. Ridge, Lasso and Bayesian additive-dominance genomic models. BMC Genet, 2015, 16: 105. | [53] | VanRaden PM, Null DJ, Sargolzaei M, Wiggans GR, Tooker ME, Cole JB, Sonstegard TS, Connor EE, Winters M, Van Kaam JBCHM, Valentini A, Van Doormaal BJ, Faust MA, Doak GA. Genomic imputation and evaluation using high-density Holstein genotypes. J Dairy Sci, 2013, 96(1): 668-678. | [54] | Liu Z, Goddard ME, Reinhardt F, Reents R. A single-step genomic model with direct estimation of marker effects. J Dairy Sci, 2014, 97(9): 5833-5850. | [55] | Legarra A, Christensen OF, Aguilar I, Misztal I. Single Step, a general approach for genomic selection. Livest Sci, 2014, 166: 54-65. | [56] | Gao HD, Christensen OF, Madsen P, Nielsen US, Zhang Y, Lund MS, Su GS. Comparison on genomic predictions using three GBLUP methods and two single-step blending methods in the Nordic Holstein population. Genet Sel Evol, 2012, 44: 8. | [57] | Aguilar I, Misztal I, Johnson DL, Legarra A, Tsuruta S, Lawlor TJ. Hot topic: A unified approach to utilize phenotypic, full pedigree, and genomic information for genetic evaluation of Holstein final score. J Dairy Sci, 2010, 93(2): 743-752. | [58] | Christensen OF, Madsen P, Nielsen B, Ostersen T, Su G. Single-step methods for genomic evaluation in pigs. Animal, 2012, 6(10): 1565-1571. | [59] | Ostersen T, Christensen OF, Madsen P, Henryon M. Sparse single-step method for genomic evaluation in pigs. Genet Sel Evol, 2016, 48: 48. | [60] | Legarra A, Aguilar I, Misztal I. A relationship matrix including full pedigree and genomic information. J Dairy Sci, 2009, 92(9): 4656-4663. | [61] | Misztal I, Legarra A, Aguilar I. Computing procedures for genetic evaluation including phenotypic, full pedigree, and genomic information. J Dairy Sci, 2009, 92(9): 4648-4655. | [62] | Tsuruta S, Misztal I, Aguilar I, Lawlor TJ. Multiple-trait genomic evaluation of linear type traits using genomic and phenotypic data in US Holsteins. J Dairy Sci, 2011, 94(8): 4198-4204. | [63] | Chesnais JP, Cooper TA, Wiggans GR, Sargolzaei M, Pryce JE, Miglior F. Using genomics to enhance selection of novel traits in North American dairy cattle. J Dairy Sci, 2016, 99(3): 2413-2427. | [64] | Buch LH, S?rensen MK, Berg P, Pedersen LD, S?rensen AC. Genomic selection strategies in dairy cattle: Strong positive interaction between use of genotypic information and intensive use of young bulls on genetic gain. J Anim Breed Genet, 2012, 129(2): 138-151. | [65] | >Andersen-Ranberg I.A., Grindfleck E. Implementation of genomic selection in Norsvin genetic program: genetic gain in production and maternal traits in Norsvin Landrace. In: Proceedings of the 10th World Congress Genet. Appl. Livest. Prod., Vancouver, Canada, 2014, 508. | [66] | Miar Y, Plastow G, Bruce H, Moore S, Manafiazar G, Kemp R, Charagu P, Huisman A, Van Haandel B, Zhang CY, McKay R, Wang ZQ. Genetic and phenotypic correlations between performance traits with meat quality and carcass characteristics in commercial crossbred pigs. PLoS One, 2014, 9(10): e110105. | [67] | Simianer H, Pimentel ECG. Robust QTL fine mapping by applying a quantitative transmission disequilibrium test to the Mendelian sampling term. J Anim Breed Genet, 2009, 126(6): 432-442. | [68] | Cleveland MA, Forni S, Deeb N, Maltecca C. Genomic breeding value prediction using three Bayesian methods and application to reduced density marker panels. BMC Proc, 2010, 4(Suppl. 1): S6. | [69] | Long N, Gianola D, Rosa GJM, Weigel KA, Avenda?o S. Machine learning classification procedure for selecting SNPs in genomic selection: application to early mortality in broilers. J Anim Breed Genet, 2007, 124(6): 377-389. | [70] | González-Recio O, Gianola D, Rosa GJ, Weigel KA, Kranis A. Genome-assisted prediction of a quantitative trait measured in parents and progeny: application to food conversion rate in chickens. Genet Sel Evol, 2009, 41: 3. | [71] | Simeone R, Misztal I, Aguilar I, Vitezica ZG. Evaluation of a multi-line broiler chicken population using a single- step genomic evaluation procedure. J Anim Breed Genet, 2012, 129(1): 3-10. | [72] | Wolc A, Zhao HH, Arango J, Settar P, Fulton JE, O'Sullivan NP, Preisinger R, Stricker C, Habier D, Fernando RL, Garrick DJ, Lamont SJ, Dekkers JCM. Response and inbreeding from a genomic selection experiment in layer chickens. Genet Sel Evol, 2015, 47(1): 59. | [73] | Liu TF, Qu H, Luo CL, Li XW, Shu DM, Lund MS, Su GS. Genomic selection for the improvement of antibody response to Newcastle disease and avian influenza virus in chickens. PLoS One, 2014, 9(11): e112685. | [74] | Jiang J, Shen B, O'Connell JR, VanRaden PM, Cole JB, Ma L. Dissection of additive, dominance, imprinting effects for production and reproduction traits in Holstein cattle. BMC Genomics, 2017, 30. ; 18(1): 425. |
|