[1] Meuwissen THE, Hayes BJ, Goddard ME. Prediction of total genetic value using genome-wide dense marker maps. Genetics, 2001, 157(4): 1819–1829. <\p>
[2] Solberg TR, Sonesson AK, Woolliams JA, Meuwissen THE. Reducing dimensionality for prediction of ge-nome-wide breeding values. Genet Sel Evol, 2009, 41(1): 29. <\p>
[3] VanRaden PM. Efficient methods to compute genomic predictions. J Dairy Sci, 2008, 91(11): 4414–4423. <\p>
[4] Zhang Z, Liu J, Ding X, Bijma P, de Koning DJ, Zhang Q. Best linear unbiased prediction of genomic breeding val-ues using a trait-specific marker-derived relationship ma-trix. PLoS ONE, 2010, 5(9): e12648. <\p>
[5] Habier D, Fernando RL, Kizilkaya K, Garrick DJ. Exten-sion of the Bayesian alphabet for genomic selection. BMC Bioinformatics, 2011, 12(1): 186. <\p>
[6] Verbyla KL, Hayes BJ, Bowman PJ, Goddard ME. Accu-racy of genomic selection using stochastic search variable selection in Australian Holstein Friesian dairy cattle. Genet Res (Camb), 2009, 91(5): 307–311. <\p>
[7] Yi N, Xu S. Bayesian LASSO for quantitative trait loci mapping. Genetics, 2008, 179(2): 1045–1055. <\p>
[8] Zou H, Hastie T. Regularization and variable selection via the elastic net. J R Stat Soc Series B Stat Methodol, 2005, 67(2): 301–320. <\p>
[9] Gianola D, Fernando RL, Stella A. Genomic-assisted pre-diction of genetic value with semiparametric procedures. Genetics, 2006, 173(3): 1761–1776. <\p>
[10] Long N, Gianola D, Rosa GJM, Weigel KA, Avendano S. Machine learning classification procedure for selecting SNPs in genomic selection: application to early mortality in broilers. J Anim Breed Genet, 2007, 124(6): 377–389. <\p>
[11] Sun XC, Habier D, Fernando RL, Garrick DJ, Dekkers JCM. Genomic breeding value prediction and QTL map-ping of QTLMAS2010 data using Bayesian Methods. BMC Proceedings, 2011, 5(Suppl. 3): S13. <\p>
[12] 刘小磊, 杨松柏, Max F Rothschild, ZHANG Zhi-Wu, 樊斌. 利用紧缩线性模型和贝叶斯模型对猪总产仔数和产活仔数性状的全基因组关联研究. 遗传, 2012, 34(10): 1261–1270. <\p>
[13] Fernando RL, Habier D, Stricker C, Dekkers JCM, Totir LR. Genomic selection. Acta Agric Scand A Anim Sci, 2007, 57(4): 192–195. <\p>
[14] Gianola D, de los Campos G, Hill WG, Manfredi E, Fer-nando R. Additive genetic variability and the Bayesian alphabet. Genetics, 2009, 183(1): 347–363. <\p>
[15] Tibshirani R. Regression shrinkage and selection via the Lasso. J R Stat Soc Series B Stat Methodol, 1996, 58(1): 267–288. <\p>
[16] Yuan M, Lin Y. Efficient empirical Bayes variable selec-tion and estimation in linear models. J Am Stat Assoc, 2005, 100(472): 1215–1225. <\p>
[17] Park T, Casella G. The Bayesian Lasso. Technical report. Gainesville, FL: University of Florida, 2008. <\p>
[18] Usai MG, Goddard ME, Hayes BJ. LASSO with cross- validation for genomic selection. Genet Res (Camb), 2009, 91(6): 427–436. <\p>
[19] Lund MS, Sahana G, de Koning DJ, Su G, Carlborg O. Comparison of analyses of the QTLMAS XII common dataset. I: Genomic selection. BMC Proceedings, 2009, 3(Suppl. 1): S1. <\p>
[20] Szydlowski M, Paczyńska P. QTLMAS 2010: simulated dataset. BMC Proceedings, 2011, 5(Suppl. 3):S3. <\p>
[21] Bastiaansen JWM, Bink MCAM, Coster A, Maliepaard C, Calus MPL. Comparison of analyses of the QTLMAS XIII common dataset. I: genomic selection. BMC Proceedings, 2010, 4(Suppl. 1): S1. <\p>
[22] Pszczola M, Strabel T, Wolc A, Mucha S, Szydlowski M. Comparison of analyses of the QTLMAS XIV common dataset. I: genomic selection. BMC Proceedings, 2011, 5(Suppl. 3): S1. <\p>
[23] Daetwyler HD, Pong-Wong R, Villanueva B, Woolliams JA. The impact of genetic architecture on Genome-wide evaluation methods. Genetics, 2010, 185(3): 1021–1031. <\p>
[24] Moser G, Tier B, Crump RE, Khatkar MS, Raadsma HW. A comparison of five methods to predict genomic breeding values of dairy bulls from genome-wide SNP markers. Genet Sel Evol, 2009, 41(1): 56. <\p>
[25] Chen CY, Misztal I, Aguilar I, Tsuruta S, Meuwissen THE, Aggrey SE, Muir WM. Genome wide marker assisted se-lection in chicken: making the most of all data, pedigree, phenotypic,and genomic in a simple one step procedure. In: Proceeding of the 9th world congress on genetics applied to livestock production. Germany. 2010, 0288. <\p>
[26] Habier D, Tetens J, Seefried F-R, Lichtner P, Thaller G. The impact of genetic relationship information on ge-nomic breeding values in German Holstein cattle. Genet Sel Evol, 2010, 42(1): 5. <\p>
[27] Hayes BJ, Bowman PJ, Chamberlain AJ, Goddard ME. Invited review: Genomic selection in dairy cattle: progress and challenges. J Dairy Sci, 2009, 92(2): 433–443. <\p>
[28] VanRaden PM, Van Tassell CP, Wiggans GR, Sonstegard TS, Schnabel RD, Taylor JF, Schenkel FS. Invited review: Reliability of genomic predictions for North American Holstein bulls. J Dairy Sci, 2009, 92(1): 16–24. <\p>
[29] Grisart B, Farnir F, Karim L, Cambisano N, Kim J-J, Kvasz A, Mni M, Simon P, Frere JM, Coppieters W, Georges M. Genetic and functional confirmation of the causality of the DGAT1 K232A quantitative trait nucleo-tide in affecting milk yield and composition. Proc Natl Acad Sci USA, 2004, 101(8): 2398–2403. <\p>
[30] Hayashi T, Iwata H. EM algorithm for Bayesian estimation of genomic breeding values. BMC Genetics, 2010, 11: 3. <\p>
[31] Meuwissen THE, Solberg TR, Shepherd R, Woolliams JA. A fast algorithm for BayesB type of prediction of ge-nome-wide estimates of genetic value. Genet Sel Evol, 2009, 41(1): 2. <\p>
[32] Jia Y, Jannink J-L. Multiple-trait genomic selection meth-ods increase genetic value prediction accuracy. Genetics, 2012, 192(4): 1513–1522. <\p>
[33] Solberg TR, Sonesson AK, Woolliams JA, Ødegard J, Meuwissen THE. Persistence of accuracy of genome-wide breeding values over generations when including a poly-genic effect. Genet Sel Evol, 2009, 41(1): 53.<\p> |