遗传 ›› 2025, Vol. 47 ›› Issue (6): 672-680.doi: 10.16288/j.yczz.24-329
郭念1(), 王辰杰1, 李钊1, 韩囡囡1, 周晨1, 王凯迎1, 黄科2, 潘咏清2,3, 李英洁2(
), 李云海2(
)
收稿日期:
2024-11-14
修回日期:
2024-12-29
出版日期:
2025-06-20
发布日期:
2025-02-21
通讯作者:
李英洁,博士,博士后,研究方向:水稻籽粒大小调控。E-mail: liyingjie@genetics.ac.cn;作者简介:
郭念,硕士研究生,专业方向:作物栽培与耕作。E-mail: 1243323954@qq.com
基金资助:
Nian Guo1(), Chenjie Wang1, Zhao Li1, Nannan Han1, Chen Zhou1, Kaiying Wang1, Ke Huang2, Yongqing Pan2,3, Yingjie Li2(
), Yunhai Li2(
)
Received:
2024-11-14
Revised:
2024-12-29
Published:
2025-06-20
Online:
2025-02-21
Supported by:
摘要:
籽粒大小是水稻产量的关键决定因素之一,挖掘调控水稻籽粒大小的基因并解析其分子机制,对水稻精准育种具有重要意义。本研究通过EMS诱变粳稻品种ZH11,获得一个籽粒变窄变长的突变体nlg1(narrow and long grain 1)。扫描电镜观察发现nlg1成熟颖壳外表皮纵向细胞数目增加,横向细胞数目减少且细胞宽度变窄,表明NLG1基因可能通过调控颖壳细胞的增殖和扩展影响籽粒大小。结合基因组重测序和MutMap分析,将候选基因定位为LOC_Os09g27590(即已报道的GS9),该基因编码一个结构域功能未知的蛋白。在nlg1突变体中,GS9基因第一个外显子插入一个碱基C,导致移码突变和蛋白翻译提前终止。遗传互补实验证实NLG1基因能够恢复nlg1突变体的表型。因此,本研究鉴定了一个新的GS9等位突变,为深入解析GS9调控籽粒大小的分子机制提供了新线索,同时为水稻分子设计育种提供了重要的基因资源和理论依据。
郭念, 王辰杰, 李钊, 韩囡囡, 周晨, 王凯迎, 黄科, 潘咏清, 李英洁, 李云海. 水稻窄长粒突变体nlg1的筛选及候选基因鉴定[J]. 遗传, 2025, 47(6): 672-680.
Nian Guo, Chenjie Wang, Zhao Li, Nannan Han, Chen Zhou, Kaiying Wang, Ke Huang, Yongqing Pan, Yingjie Li, Yunhai Li. Genetic analysis and identification of candidate genes for a narrow and long grain mutant (nlg1) in rice[J]. Hereditas(Beijing), 2025, 47(6): 672-680.
图1
突变体表型及农艺性状分析 A:野生型ZH11与突变体nlg1植株形态(标尺20 cm);B:野生型ZH11与突变体nlg1主穗形态(标尺5 cm);C:野生型ZH11与突变体nlg1籽粒形态(标尺2 mm);D~G:野生型ZH11与突变体nlg1的株高、分蘖数、叶长、叶宽数据统计(n=15);H~K:野生型ZH11与突变体nlg1的穗长、一级分枝数、二级分枝数、穗粒数的数据统计(n=15);L~O:野生型ZH11与突变体nlg1的粒长和粒宽(n=45)、粒厚(n=15)、千粒重(n=3)数据统计。图中数值均通过t检验分析,表示为平均值±标准差;*P<0.05,表示与对照ZH11相比有显著差异;**P<0.01,表示与对照ZH11相比有极显著差异。"
表2
nlg1突变位点分析"
编号 | 染色体 | 物理位置 | 碱基变化 | 所在位置 | 基因号 | 测序频次 | 突变类型 |
---|---|---|---|---|---|---|---|
INDEL1 | Chr.9 | 2826399 | A/AT | 基因间区 | / | 0/8 | / |
SNP1 | Chr.9 | 3547096 | A/C | 基因间区 | / | 0/7 | / |
SNP2 | Chr.9 | 15786577 | G/A | 5'UTR | LOC_Os05g39250 | 0/24 | / |
INDEL2 | Chr.9 | 16691171 | G/GC | 外显子 | LOC_Os09g27590 | 0/27 | 移码突变 |
SNP3 | Chr.9 | 18187015 | T/C | 基因上游 | LOC_Os09g29980 | 0/15 | / |
INDEL3 | Chr.9 | 22586699 | A/AAC | 基因上游 | LOC_Os09g39330 | 0/20 | / |
INDEL4 | Chr.9 | 23212674 | T/TG | 基因上游 | LOC_Os09g34310 | 0/5 | / |
[1] |
Takeda S, Matsuoka M. Genetic approaches to crop improvement: responding to environmental and population changes. Nat Rev Genet, 2008, 9(6): 444-457.
pmid: 18475268 |
[2] | Yuan LP. Developing hybrid rice to ensure food security. Hybrid Rice, 2010, 25(S1): 1-2. |
袁隆平. 发展杂交水稻保障粮食安全. 杂交水稻, 2010, 25(S1): 1-2. | |
[3] |
Ren DY, Ding CQ, Qian Q. Molecular bases of rice grain size and quality for optimized productivity. Sci Bull (Beijing), 2023, 68(3): 314-350.
pmid: 36710151 |
[4] | Lan JS, Zhuang H. Advances in the molecular mechanism of rice plant type. Chin J Rice Sci, 2023, 37(5): 449-458. |
兰金松, 庄慧. 水稻株型的分子机理研究进展. 中国水稻科学, 2023, 37(5): 449-458. | |
[5] | Huang Y, Hu Y, Fu XD, Xing YZ. Functional genes for grain yield related traits and their application in rice breeding. Chin Bull Life Sci, 2016, 28(10): 1147-1155. |
黄勇, 胡勇, 傅向东, 邢永忠. 水稻产量性状的功能基因及其应用. 生命科学, 2016, 28(10): 1147-1155. | |
[6] |
Che RH, Tong HN, Shi BH, Liu YQ, Fang SR, Liu DP, Xiao YH, Hu B, Liu LC, Wang HR, Zhao MF, Chu CC. Control of grain size and rice yield by GL2-mediated brassinosteroid responses. Nat Plants, 2015, 2: 15195.
pmid: 27250747 |
[7] |
Duan PG, Ni S, Wang JM, Zhang BL, Xu R, Wang YX, Chen HQ, Zhu XD, Li YH. Regulation of OsGRF4 by OsmiR396 controls grain size and yield in rice. Nat Plants, 2015, 2: 15203.
pmid: 27250749 |
[8] |
Hu J, Wang YX, Fang YX, Zeng LJ, Xu J, Yu HP, Shi ZY, Pan JJ, Zhang D, Kang SJ, Zhu L, Dong GJ, Guo LB, Zeng DL, Zhang GH, Xie LH, Xiong GS, Li JY, Qian Q. A rare allele of GS2 enhances grain size and grain yield in rice. Mol Plant, 2015, 8(10): 1455-1465.
pmid: 26187814 |
[9] |
Li SC, Gao FY, Xie KL, Zeng XH, Cao Y, Zeng J, He ZS, Ren Y, Li WB, Deng QM, Wang SQ, Zheng AP, Zhu J, Liu HN, Wang LX, Li P. The OsmiR396c-OsGRF4-OsGIF1 regulatory module determines grain size and yield in rice. Plant Biotechnol J, 2016, 14(11): 2134-2146.
pmid: 27107174 |
[10] |
Segami S, Kono I, Ando T, Yano M, Kitano H, Miura K, Iwasaki Y. Small and round seed 5 gene encodes alpha-tubulin regulating seed cell elongation in rice. Rice (N Y), 2012, 5(1): 4.
pmid: 24764504 |
[11] |
Sunohara H, Kawai T, Shimizu-Sato S, Sato Y, Sato K, Kitano H. A dominant mutation of TWISTED DWARF 1 encoding an alpha-tubulin protein causes severe dwarfism and right helical growth in rice. Genes Genet Syst, 2009, 84(3): 209-218.
pmid: 19745569 |
[12] |
Si LZ, Chen JY, Huang XH, Gong H, Luo JH, Hou QQ, Zhou TY, Lu TT, Zhu JJ, Shangguan YY, Chen EW, Gong CX, Zhao Q, Jing YF, Zhao Y, Li Y, Cui LL, Fan DL, Lu YQ, Weng QJ, Wang YC, Zhan QL, Liu KY, Wei XH, An K, An G, Han B. OsSPL13 controls grain size in cultivated rice. Nat Genet, 2016, 48(4): 447-456.
pmid: 26950093 |
[13] |
Hu JH, Huang LY, Chen GL, Liu H, Zhang YS, Zhang R, Zhang SL, Liu JT, Hu QY, Hu FY, Wang W, Ding Y. The elite alleles of OsSPL4 regulate grain size and increase grain yield in rice. Rice (N Y), 2021, 14(1): 90.
pmid: 34727228 |
[14] |
Yuan H, Qin P, Hu L, Zhan SJ, Wang SF, Gao P, Li J, Jin MY, Xu ZY, Gao Q, Du AP, Tu B, Chen WL, Ma BT, Wang YP, Li SG. OsSPL18 controls grain weight and grain number in rice. J Genet Genomics, 2019, 46(1): 41-51.
pmid: 30737149 |
[15] |
Wang SK, Wu K, Yuan QB, Liu XY, Liu ZB, Lin XY, Zeng RZ, Zhu HT, Dong GJ, Qian Q, Zhang GQ, Fu XD. Control of grain size, shape and quality by OsSPL16 in rice. Nat Genet, 2012, 44(8): 950-954.
pmid: 22729225 |
[16] |
Qin MM, Zhang Y, Yang YM, Miao CB, Liu SK. Seed-specific overexpression of SPL12 and IPA1 improves seed dormancy and grain size in rice. Front Plant Sci, 2020, 11: 532771.
pmid: 33013960 |
[17] |
Zhang XF, Yang CY, Lin HX, Wang JW, Xue HW. Rice SPL12 coevolved with GW5 to determine grain shape. Sci Bull (Beijing), 2021, 66(23): 2353-2357.
pmid: 36654120 |
[18] |
Yan Y, Wei MX, Li Y, Tao H, Wu HY, Chen ZF, Li C, Xu JH. MiR529a controls plant height, tiller number, panicle architecture and grain size by regulating SPL target genes in rice (Oryza sativa L.). Plant Sci, 2021, 302: 110728.
pmid: 33288029 |
[19] |
Yue EK, Li C, Li Y, Liu Z, Xu JH. MiR529a modulates panicle architecture through regulating SQUAMOSA PROMOTER BINDING-LIKE genes in rice (Oryza sativa). Plant Mol Biol, 2017, 94(4-5): 469-480.
pmid: 28551765 |
[20] |
Huang Y, Bai XF, Cheng NN, Xiao JH, Li XH, Xing YZ. Wide Grain 7 increases grain width by enhancing H3K4me3 enrichment in the OsMADS1 promoter in rice (Oryza sativa L.). Plant J, 2020, 102(3): 517-528.
pmid: 31830332 |
[21] |
Liu Q, Han RX, Wu K, Zhang JQ, Ye YF, Wang SS, Chen JF, Pan YJ, Li Q, Xu XP, Zhou JW, Tao DY, Wu YJ, Fu XD. G-protein βγ subunits determine grain size through interaction with MADS-domain transcription factors in rice. Nat Commun, 2018, 9(1): 852.
pmid: 29487282 |
[22] |
Zuo ZW, Zhang ZH, Huang DR, Fan YY, Yu SB, Zhuang JY, Zhu YJ. Control of thousand-grain weight by OsMADS56 in rice. Int J Mol Sci, 2021, 23(1): 125.
pmid: 35008551 |
[23] |
Zhan PL, Ma SP, Xiao ZL, Li FP, Wei X, Lin SJ, Wang XL, Ji Z, Fu Y, Pan JH, Zhou M, Liu Y, Chang ZY, Li L, Bu SH, Liu ZP, Zhu HT, Liu GF, Zhang GQ, Wang SK. Natural variations in grain length 10 (GL10) regulate rice grain size. J Genet Genomics, 2022, 49(5): 405-413.
pmid: 35151907 |
[24] | Zhang Y, Yu HP, Liu J, Wang W, Sun J, Gao Q, Zhang YH, Ma DR, Wang JY, Xu ZJ, Chen WF. Loss of function of OsMADS34 leads to large sterile lemma and low grain yield in rice (Oryza sativa L.). Mol Breed, 2016, 36(11): 147. |
[25] |
Yu XQ, Xia SS, Xu QK, Cui YJ, Gong M, Zeng DL, Zhang Q, Shen L, Jiao GA, Gao ZY, Hu J, Zhang GH, Zhu L, Guo LB, Ren DY, Qian Q. ABNORMAL FLOWER AND GRAIN 1 encodes OsMADS6 and determines palea identity and affects rice grain yield and quality. Sci China Life Sci, 2020, 63(2): 228-238.
pmid: 31919631 |
[26] |
Lan J, Lin QB, Zhou CL, Ren YK, Liu X, Miao R, Jing RN, Mou CL, Nguyen T, Zhu XJ, Wang Q, Zhang X, Guo XP, Liu SJ, Jiang L, Wan JM. Small grain and semi-dwarf 3, a WRKY transcription factor, negatively regulates plant height and grain size by stabilizing SLR1 expression in rice. Plant Mol Biol, 2020, 104(4-5): 429-450.
pmid: 32808190 |
[27] |
Tian XJ, He ML, Mei EY, Zhang BW, Tang JQ, Xu M, Liu JL, Li XF, Wang ZY, Tang WQ, Guan QJ, Bu QY. WRKY53 integrates classic brassinosteroid signaling and the mitogen-activated protein kinase pathway to regulate rice architecture and seed size. Plant Cell, 2021, 33(8): 2753-2775.
pmid: 34003966 |
[28] |
Xiang JS, Tang S, Zhi H, Jia GQ, Wang HJ, Diao XM. Loose Panicle1 encoding a novel WRKY transcription factor, regulates panicle development, stem elongation, and seed size in foxtail millet [Setaria italica (L.) P. Beauv.]. PLoS One, 2017, 12(6): e0178730.
pmid: 28570666 |
[29] |
Takagi H, Tamiru M, Abe A, Yoshida K, Uemura A, Yaegashi H, Obara T, Oikawa K, Utsushi H, Kanzaki E, Mitsuoka C, Natsume S, Kosugi S, Kanzaki H, Matsumura H, Urasaki N, Kamoun S, Terauchi R. MutMap accelerates breeding of a salt-tolerant rice cultivar. Nat Biotechnol, 2015, 33(5): 445-449.
pmid: 25798936 |
[30] |
Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H, Kanzaki H, Matsumura H, Yoshida K, Mitsuoka C, Tamiru M, Innan H, Cano L, Kamoun S, Terauchi R. Genome sequencing reveals agronomically important loci in rice using MutMap. Nat Biotechnol, 2012, 30(2): 174-178.
pmid: 22267009 |
[31] |
Huang LJ, Hua K, Xu R, Zeng DL, Wang RC, Dong GJ, Zhang GZ, Lu XL, Fang N, Wang DK, Duan PG, Zhang BL, Liu ZP, Li N, Luo YH, Qian Q, Yao SG, Li YH. The LARGE2-APO1/APO2 regulatory module controls panicle size and grain number in rice. Plant Cell, 2021, 33(4): 1212-1228.
pmid: 33693937 |
[32] |
Lyu J, Wang DK, Duan PG, Liu YP, Huang K, Zeng DL, Zhang LM, Dong GJ, Li YJ, Xu R, Zhang BL, Huang XH, Li N, Wang YC, Qian Q, Li YH. Control of grain size and weight by the GSK2-LARGE1/OML4 pathway in rice. Plant Cell, 2020, 32(6): 1905-1918.
pmid: 32303659 |
[33] |
Zhao DS, Li QF, Zhang CQ, Zhang C, Yang QQ, Pan LX, Ren XY, Lu J, Gu MH, Liu QQ. GS9 acts as a transcriptional activator to regulate rice grain shape and appearance quality. Nat Commun, 2018, 9(1): 1240.
pmid: 29588443 |
[34] |
Yang C, Shen WJ, He Y, Tian ZH, Li JX. OVATE family protein 8 positively mediates brassinosteroid signaling through interacting with the GSK3-like kinase in rice. PLoS Genet, 2016, 12(6): e1006118.
pmid: 27332964 |
[35] |
Yu Y, He RR, Yang L, Feng YZ, Xue J, Liu Q, Zhou YF, Lei MQ, Zhang YC, Lian JP, Chen YQ. A transthyretin- like protein acts downstream of miR397 and LACCASE to regulate grain yield in rice. Plant Cell, 2024, 36(8): 2893-2907.
pmid: 38735686 |
[36] |
Li N, Xu R, Li YH. Molecular networks of seed size control in plants. Annu Rev Plant Biol, 2019, 70: 435-463.
pmid: 30795704 |
[37] | Dang S, Zhang ZY, Chen DY, Yuan MH. Research progress of different plant-panicle types of rice varieties. J Anhui Agric Sci, 2019, 47(6): 14-15+19. |
党姝, 张振宇, 陈殿元, 元明浩. 不同株穗型水稻品种研究进展. 安徽农业科学, 2019, 47(6): 14-15+19. | |
[38] | Zhao DS, Liu JY, Ding AQ, Zhang T, Ren XY, Zhang L, Li QF, Fan XL, Zhang CQ, Liu QQ. Improving grain appearance of erect-panicle japonica rice cultivars by introgression of the null gs9 allele. J Integr Agric, 2021, 20(8): 2032-2042. |
[1] | 王占春, 钟桂涛, 张贝贝, 谢怡琳, 唐定中, 王伟. 水稻稻瘟病抗性基因研究进展[J]. 遗传, 2025, 47(5): 533-545. |
[2] | 吴岳阳, 周小燕, 吴玉峰, 黄驹. NMD途径功能缺陷对水稻表型及转录组的影响[J]. 遗传, 2024, 46(7): 540-551. |
[3] | 卞中, 曹东平, 庄文姝, 张舒玮, 刘巧泉, 张林. 水稻分子设计育种启示:传统与现代相结合[J]. 遗传, 2023, 45(9): 718-740. |
[4] | 刘向东, 吴锦文, 陆紫君, Muhammad Qasim Shahid. 同源四倍体水稻:低育性机理、改良与育种展望[J]. 遗传, 2023, 45(9): 781-792. |
[5] | 郝小花, 胡爽, 赵丹, 田连福, 谢子靖, 吴莎, 胡文俐, 雷晗, 李东屏. OsGA3ox通过合成不同活性GA调控水稻育性及株高[J]. 遗传, 2023, 45(9): 845-855. |
[6] | 郑镇武, 赵宏源, 梁晓娅, 王一珺, 王驰航, 巩高洋, 黄金燕, 张桂权, 王少奎, 刘祖培. 水稻qGL3.4调控籽粒大小与株型[J]. 遗传, 2023, 45(9): 835-844. |
[7] | 陈明江, 刘贵富, 肖叶青, 余泓, 李家洋. 中科发早粳1号分子设计育种[J]. 遗传, 2023, 45(9): 829-834. |
[8] | 刘永强, 李威威, 刘昕禹, 储成才. 水稻分蘖氮响应调控机理研究进展[J]. 遗传, 2023, 45(5): 367-378. |
[9] | 李姗, 黄允智, 刘学英, 傅向东. 作物氮肥利用效率遗传改良研究进展[J]. 遗传, 2021, 43(7): 629-641. |
[10] | 张昌泉, 冯琳皓, 顾铭洪, 刘巧泉. 江苏省水稻品质性状遗传和重要基因克隆研究进展[J]. 遗传, 2021, 43(5): 425-441. |
[11] | 代航, 李延, 刘树春, 林磊, 吴娟燕, 张志杰, 彭崎春, 李楠, 张向前. 类伸展蛋白OsPEX1对水稻花粉育性的影响[J]. 遗传, 2021, 43(3): 271-279. |
[12] | 闫凌月, 张豪健, 郑雨晴, 丛韫起, 刘次桃, 樊帆, 郑铖, 袁贵龙, 潘根, 袁定阳, 段美娟. 转录因子OsMADS25提高水稻对低温的耐受性[J]. 遗传, 2021, 43(11): 1078-1087. |
[13] | 胡雅丽, 戴睿, 刘永鑫, 张婧赢, 胡斌, 储成才, 袁怀波, 白洋. 水稻典型品种日本晴和IR24根系微生物组的解析[J]. 遗传, 2020, 42(5): 506-518. |
[14] | 张桂权. 基于SSSL文库的水稻设计育种平台[J]. 遗传, 2019, 41(8): 754-760. |
[15] | 刘次桃, 王威, 毛毕刚, 储成才. 水稻耐低温逆境研究:分子生理机制及育种展望[J]. 遗传, 2018, 40(3): 171-185. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: