[1] Jones-Rhoades MW, Bartel DP. Computational identifica-tion of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell, 2004, 14(6): 787-799.
[2] Bartel DP. MicroRNAs: Genomics, biogenesis, mecha-nism, and function. Cell, 2004, 116(2): 281-297.
[3] Schwab R, Palatnik JF, Riester M, Schommer C, Schmid M, Weigel D. Specific effects of microRNAs on the plant transcriptome. Dev Cell, 2005, 8(4): 517–527.
[4] Carrington JC, Ambros V. Role of microRNAs in plant and animal development. Science, 2003, 301(5631): 336-338.
[5] Sunkar R, Zhu JK. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell, 2004, 16(8): 2001–2019.
[6] Sunkar R, Kapoor A, Zhu JK. Posttranscriptional induc-tion of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and im-portant for oxidative stress tolerance. Plant Cell, 2006, 18(8): 2051–2065.
[7] Bonnet E, Wuyts J, Rouze P, Van de Peer Y. Detection of 91 potential conserved plant microRNAs in Arabidopsis thaliana and Oryza sativa identifies important target genes. Proc Natl Acad Sci USA, 2004, 101(31): 11511–11516.
[8] Mittler R. Oxidative stress, antioxidants and stress toler-ance. Trends Plant Sci, 2002, 7(9): 405–410.
[9] Kliebenstein DJ, Monde RA, Last RL. Superoxide dismu-tase in Arabidopsis: An eclectic enzyme family with dis-parate regulation and protein localization. Plant Physiol, 1998, 118(2): 637–650.
[10] Axtell MJ, Bartel DP. Antiquity of microRNAs and their targets in land plants. Plant Cell, 2005, 17(6): 1658–1673.
[11] Axtell MJ, Snyder JA, Bartel DP. Common functions for diverse small RNAs of land plants. Plant Cell, 2007, 19(6): 1750–1769.
[12] Dugas DV, Bartel B. Sucrose induction of Arabidopsis miR398 represses two Cu/Zn superoxide dismutases. Plant Mol Biol, 2008, 67(4): 403–417 .
[13] Pilon M, Abdel-Ghany SE, Cohu CM, Gogolin KA, Ye H. Copper cofactor delivery in plant cells. Curr Opin Plant Biol, 2006, 9(3): 256–263.
[14] Weigel M, Varotto C, Pesaresi P, Finazzi G, Rappaport F, Salamini F, Leister D. Plastocyanin is indispensable for photosynthetic electron flow in Arabidopsis thaliana. J Biol Chem, 2003, 278(33): 31286–31289.
[15] Abdel-Ghany SE, Pilon M. MicroRNA-mediated systemic down-regulation of copper protein expression in response to low copper availability in Arabidopsis. J Biol Chem, 2008, 283(23): 15932–15945.
[16] Yamasaki H, Abdel-Ghany SE, Cohu CM, Kobayashi Y, Shikanai T, Pilon M. Regulation of copper homeostasis by microRNA in Arabidopsis. J Biol Chem, 2007, 282(22): 16369–16378.
[17] Yamasaki H, Hayashi M, Fukazawa M, Kobayashi Y, Shi-kanai T. SQUAMOSA promoter binding protein-like7 is a central regulator for copper homeostasis in Arabidopsis. Plant Cell, 2009, 21(1): 347–361.
[18] Clemens S. Molecular mechanisms of plant metal toler-ance and homeostasis. Planta, 2001, 212(4): 475–486.
[19] Hildebrandt U, Regvar M, Bothe H. Arbuscular my-corrhiza and heavy metal tolerance. Phytochemistry, 2007, 68(1): 139–146.
[20] Zhou ZS, Huang SQ, Yang ZM. Bioinformatic identifica-tion and expression analysis of new microRNAs from Medicago truncatula. Biochem Biophys Res Commun, 2008, 374(3): 538–542.
[21] Roitsch T. Source-sink regulation by sugar and stress. Curr Opin Plant Biol, 1999, 2(3): 198–206.
[22] Jagadeeswaran G, Saini A, Sunkar R. Biotic and abiotic stress down-regulate miR398 expression in Arabidopsis. Plan |