[1] Li W, Wu Q. Protocadherin and the diversity of neurons. Sci Technol Vision , 2013, (27): 14. 李伟, 吴强. 原钙粘蛋白分子与神经元的多样性. 科技视界, 2013, (27): 14.
[2] Chen WV, Alvarez FJ, Lefebvre JL, Friedman B, Nwakeze C, Geiman E, Smith C, Thu CA, Tapia JC, Tasic B, Sanes JR, Maniatis T. Functional significance of isoform diversification in the protocadherin gamma gene cluster. Neuron , 2012, 75(3): 402-409.
[3] Garrett AM, Schreiner D, Lobas MA, Weiner JA. γ-protocadherins control cortical dendrite arborization by regulating the activity of a FAK/PKC/MARCKS signaling pathway. Neuron , 2012, 74(2): 269-276.
[4] Hirayama T, Tarusawa E, Yoshimura Y, Galjart N, Yagi T. CTCF is required for neural development and stochastic expression of clustered Pcdh genes in neurons. Cell Rep , 2012, 2(2): 345-357.
[5] Lefebvre JL, Kostadinov D, Chen WV, Maniatis T, Sanes JR. Protocadherins mediate dendritic self-avoidance in the mammalian nervous system. Nature , 2012, 488(7412): 517- 521.
[6] Suo L, Lu HN, Ying GX, Capecchi MR, Wu Q. Protocadherin clusters and cell adhesion kinase regulate dendrite complexity through Rho GTPase. J Mol Cell Biol , 2012, 4(6): 362-376.
[7] Wu Q. Comparative genomics and diversifying selection of the clustered vertebrate protocadherin genes. Genetics , 2005, 169(4): 2179-2188.
[8] Wu Q, Maniatis T. A striking organization of a large family of human neural cadherin-like cell adhesion genes. Cell , 1999, 97(6): 779-790.
[9] Wu Q, Maniatis T. Large exons encoding multiple ectodomains are a characteristic feature of protocadherin genes. Proc Natl Acad Sci USA , 2000, 97(7): 3124-3129.
[10] Wu Q, Zhang T, Cheng JF, Kim Y, Grimwood J, Schmutz J, Dickson M, Noonan JP, Zhang MQ, Myers RM, Maniatis T. Comparative DNA sequence analysis of mouse and human protocadherin gene clusters. Genome Res , 2001, 11(3): 389-404.
[11] Zou C, Huang W, Ying G, Wu Q. Sequence analysis and expression mapping of the rat clustered protocadherin gene repertoires. Neuroscience , 2007, 144(2): 579-603.
[12] Tasic B, Nabholz CE, Baldwin KK, Kim Y, Rueckert EH, Ribich SA, Cramer P, Wu Q, Axel R, Maniatis T. Promoter choice determines splice site selection in protocadherin α and γ pre-mRNA splicing. Mol Cell , 2002, 10(1): 21-33.
[13] Wang XZ, Weiner JA, Levi S, Craig AM, Bradley A, Sanes JR. Gamma-protocadherins are required for survival of spinal interneurons. Neuron , 2002, 36(5): 843-854.
[14] Esumi S, Kakazu N, Taguchi Y, Hirayama T, Sasaki A, Hirabayashi T, Koide T, Kitsukawa T, Hamada S, Yagi T. Monoallelic yet combinatorial expression of variable exons of the protocadherin-alpha gene cluster in single neurons. Nat Genet , 2005, 37(2): 171-176.
[15] Guo Y, Monahan K, Wu HY, Gertz J, Varley KE, Li W, Myers RM, Maniatis T, Wu Q. CTCF/cohesin-mediated DNA looping is required for protocadherin alpha promoter choice. Proc Natl Acad Sci USA , 2012, 109(51): 21081-21086.
[16] Schreiner D, Weiner JA. Combinatorial homophilic interaction between gamma-protocadherin multimers greatly expands the molecular diversity of cell adhesion. Proc Natl Acad Sci USA , 2010, 107(33): 14893-14898.
[17] Thu CA, Chen WV, Rubinstein R, Chevee M, Wolcott HN, Felsovalyi KO, Tapia JC, Shapiro L, Honig B, Maniatis T. Single-cell identity generated by combinatorial homophilic interactions between α, β, and γ protocadherins. Cell , 2014, 158(5): 1045-1059.
[18] Ribich S, Tasic B, Maniatis T. Identification of long-range regulatory elements in the protocadherin-α gene cluster. Proc Natl Acad Sci USA , 2006, 103(52): 19719-19724.
[19] Wu HY, Guo Y, Li W, Wu Q. Cloning and functional analysis of the regulatory elements in the human protocadherin gene cluster. Life Sci Res , 2014, 18(2): 95-99. 吴海洋, 郭亚, 李伟, 吴强. 人类原钙粘蛋白基因簇调控元件的克隆及对其启动子活性的影响. 生命科学研究, 2014, 18(2): 95-99.
[20] Yokota S, Hirayama T, Hirano K, Kaneko R, Toyoda S, Kawamura Y, Hirabayashi M, Hirabayashi T, Yagi T. Identification of the cluster control region for the protocadherin-β genes located beyond the protocadherin-γ cluster. J Biol Chem , 2011, 286(36): 31885-31895.
[21] Nichols MH, Corces VG. A CTCF code for 3D genome architecture. Cell , 2015, 162(4): 703-705.
[22] Lobanenkov VV, Nicolas RH, Adler VV, Paterson H, Klenova EM, Polotskaja AV, Goodwin GH. A novel sequence-specific DNA binding protein which interacts with three regularly spaced direct repeats of the CCCTC- motif in the 5'-flanking sequence of the chicken c-myc gene. Oncogene , 1990, 5(12): 1743-1753.
[23] Bell AC, West AG, Felsenfeld G. The protein CTCF is required for the enhancer blocking activity of vertebrate insulators. Cell , 1999, 98(3): 387-396.
[24] Guo Y, Xu Q, Canzio D, Shou J, Li JH, Gorkin DU, Jung I, Wu HY, Zhai Y, Tang YX, Lu YC, Wu YH, Jia ZL, Li W, Zhang MQ, Ren B, Krainer AR, Maniatis T, Wu Q. CRISPR inversion of CTCF sites alters genome topology and enhancer/promoter function. Cell , 2015, 162(4): 900-910.
[25] Rhee HS, Pugh BF. Comprehensive genome-wide protein- DNA interactions detected at single-nucleotide resolution. Cell , 2011, 147(6): 1408-1419.
[26] Kim TH, Abdullaev ZK, Smith AD, Ching KA, Loukinov DI, Green RD, Zhang MQ, Lobanenkov VV, Ren B. Analysis of the vertebrate insulator protein CTCF-binding sites in the human genome. Cell , 2007, 128(6): 1231-1245.
[27] Ong CT, Corces VG. CTCF: an architectural protein bridging genome topology and function. Nat Rev Genet , 2014, 15(4): 234-246.
[28] Vietri Rudan M, Hadjur S. Genetic Tailors: CTCF and cohesin shape the genome during evolution. Trends Genet , 2015, 31(11): 651-660.
[29] Feng JX, Liu T, Qin B, Zhang Y, Liu XS. Identifying ChIP-seq enrichment using MACS. Nat Protoc , 2012, 7(9): 1728-1740.
[30] Crooks GE, Hon G, Chandonia JM, Brenner SE. WebLogo: a sequence logo generator. Genome Res , 2004, 14(6): 1188-1190.
[31] The ENCODE Project Consortium. The ENCODE (ENCyclopedia of DNA elements) project. Science , 2004, 306(5696): 636-640.
[32] Heintzman ND, Stuart RK, Hon G, Fu YT, Ching CW, Hawkins RD, Barrera LO, Van Calcar S, Qu CX, Ching KA, Wang W, Weng ZP, Green RD, Crawford GE, Ren B. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat Genet , 2007, 39(3): 311-318.
[33] Loots GG, Locksley RM, Blankespoor CM, Wang ZE, Miller W, Rubin EM, Frazer KA. Identification of a coordinate regulator of interleukins 4, 13, and 5 by cross- species sequence comparisons. Science , 2000, 288(5463): 136-140.
[34] Jia ZL, Guo Y, Tang YX, Xu Q, Li BJ, Wu Q. Regulation of the protocadherin Celsr3 gene and its role in globus pallidus development and connectivity. Mol Cell Biol , 2014, 34(20): 3895-3910.
[35] Guo Y, Wu Q. The architectural rule of CTCF-mediated topological genome looping and enhancer insulation. Hereditas (Beijing) , 2015, 37(10): 1073-1074. 郭亚, 吴强. 采用DNA片段编辑技术反转CTCF结合位点改变基因组拓扑结构和增强子与启动子功能. 遗传, 2015, 37(10): 1073-1074.
[36] Dowen JM, Fan ZP, Hnisz D, Ren G, Abraham BJ, Zhang LN, Weintraub AS, Schuijers J, Lee TI, Zhao K, Young RA. Control of cell identity genes occurs in insulated neighborhoods in mammalian chromosomes. Cell , 2014, 159(2): 374-387.
[37] Hansen KH, Bracken AP, Pasini D, Dietrich N, Gehani SS, Monrad A, Rappsilber J, Lerdrup M, Helin K. A model for transmission of the H3K27me3 epigenetic mark. Nat Cell Biol , 2008, 10(11): 1291-1300.
[38] Sanyal A, Lajoie BR, Jain G, Dekker J. The long-range interaction landscape of gene promoters. Nature , 2012, 489(7414): 109-113.
[39] Fullwood MJ, Liu MH, Pan YF, Liu J, Xu H, Mohamed YB, Orlov YL, Velkov S, Ho A, Mei PH, Chew EG, Huang PY, Welboren WJ, Han YY, Ooi HS, Ariyaratne PN, Vega VB, Luo YQ, Tan PY, Choy PY, Wansa KDSA, Zhao B, Lim KS, Leow SC, Yow JS, Joseph R, Li HX, Desai KV, Thomsen JS, Lee YK, Karuturi RK, Herve T, Bourque G, Stunnenberg HG, Ruan XA, Cacheux-Rataboul V, Sung WK, Liu ET, Wei CL, Cheung E, Ruan YJ. An oestrogen-receptor-α-bound human chromatin interactome. Nature , 2009, 462(7269): 58-64.
[40] Li GL, Ruan XA, Auerbach RK, Sandhu KS, Zheng MZ, Wang P, Poh HM, Goh Y, Lim J, Zhang JY, Sim HS, Peh SQ, Mulawadi FH, Ong CT, Orlov YL, Hong SZ, Zhang ZZ, Landt S, Raha D, Euskirchen G, Wei CL, Ge WH, Wang HE, Davis C, Fisher-Aylor KI, Mortazavi A, Gerstein M, Gingeras T, Wold B, Sun Y, Fullwood MJ, Cheung E, Liu E, Sung WK, Snyder M, Ruan YJ. Extensive promoter-centered chromatin interactions provide a topological basis for transcription regulation. Cell , 2012, 148(1): 84-98.
[41] Tang ZH, Luo OJ, Li XW, Zheng MZ, Zhu JJ, Szalaj P, Trzaskoma P, Magalska A, Wlodarczyk J, Ruszczycki B, Michalski P, Piecuch E, Wang P, Wang DJ, Tian SZ, Penrad-Mobayed M, Sachs LM, Ruan XA, Wei CL, Liu ET, Wilczynski GM, Plewczynski D, Li GL, Ruan YJ. CTCF-mediated human 3D genome architecture reveals chromatin topology for transcription. Cell , 2015, 163(7): 1611-1627.
[42] Heinz S, Romanoski CE, Benner C, Glass CK. The selection and function of cell type-specific enhancers. Nat Rev Mol Cell Biol , 2015, 16(3): 144-154.
[43] Li JH, Shou J, Guo Y, Tang YX, Wu YH, Jia ZL, Zhai Y, Chen ZF, Xu Q, Wu Q. Efficient inversions and duplications of mammalian regulatory DNA elements and gene clusters by CRISPR/Cas9. J Mol Cell Biol , 2015, 7(4): 284-298.
[44] Li JH, Shou J, Wu Q. DNA fragment editing of genomes by CRISPR/Cas9. Hereditas(Beijing) , 2015, 37(10): 992-1002. 李金环, 寿佳, 吴强. CRISPR/Cas9系统在基因组DNA片段编辑中的应用. 遗传, 2015, 37(10): 992-1002.
|