[1] Snustad DP, Simmons MJ, Jenkins JB. Principles of Genetics. USA: John Wiley, 1997. <\p>
[2] Holliday R. Epigenetics: an overview. Dev Genet, 1994, 15(6): 453–457. <\p>
[3] Klose RJ, Zhang Y. Regulation of histone methylation by demethylimination and demethylation. Nat Rev Mol Cell Biol, 2007, 8(4): 307–318. <\p>
[4] Chinnusamy V, Zhu JK. Epigenetic regulation of stress responses in plants. Curr Opin Plant Biol, 2009, 12(2): 133–139. <\p>
[5] Winget JM, Mayor T. The diversity of ubiquitin recogni-tion: hot spots and varied specificity. Mol Cell, 2010, 38(5): 627–635. <\p>
[6] Kashiwagi K, Nimura K, Ura K, Kaneda Y. DNA methyl-transferase 3b preferentially associates with condensed chromatin. Nucleic Acids Res, 2011, 39(3): 874– 888. <\p>
[7] Yun MY, Wu J, Workman JL, Li B. Readers of histone modifications. Cell Res, 2011, 21(4): 564–578. <\p>
[8] Roque A, Ponte I, Arrondo JL, Suau P. Phosphorylation of the carboxy-terminal domain of histone H1: effects on secondary structure and DNA condensation. Nucleic Acids Res, 2008, 36(14): 4719–4726. <\p>
[9] 王维, 孟智启, 石放雄. 组蛋白修饰及其生物学效应. 遗传, 2012, 34(7): 810–818. <\p>
[10] Jin JJ, Cai Y, Li B, Conaway RC, Workman JL, Conaway JW, Kusch T. In and out: histone variant exchange in chromatin. Trends Biochem Sci, 2005, 30(12): 680–687. <\p>
[11] Cook PJ, Ju BG, Telese F, Wang XT, Glass CK, Rosenfeld MG. Tyrosine dephosphorylation of H2AX modulates apoptosis and survival decisions. Nature, 2009, 458(7238): 591–596. <\p>
[12] Lan L, Nakajima S, Kapetanaki MG, Hsieh CL, Fagerburg M, Thickman K, Rodriguez-Collazo P, Leuba SH, Levine AS, Rapi?-Otrin V. Monoubiquitinated histone H2A de-stabilizes photolesion-containing nucleosomes with con-comitant release of UV-damaged DNA-binding protein E3 ligase. J Biol Chem, 2012, 287(15): 12036–12049. <\p>
[13] Lu CR, Shi Y, Luo Y, Duan LN, Hou Y, Hu HB, Wang Z, Xiang PD. MAPKs and Mst1/Caspase-3 pathways con-tribute to H2B phosphorylation during UVB-induced apoptosis. Sci China Life Sci, 2010, 53(6): 663–668. <\p>
[14] Piro AS, Mayekar MK, Warner MH, Davis CP, Arndt KM. Small region of Rtf1 protein can substitute for complete Paf1 complex in facilitating global histone H2B ubiquity-lation in yeast. Proc Natl Acad Sci USA, 2012, 109(27): 10837–10842. <\p>
[15] Musselman CA, Lalonde ME, Côté J, Kutateladze TG. Perceiving the epigenetic landscape through histone readers. Nat Struct Mol Biol, 2012, 19(12): 1218–1227. <\p>
[16] Selvi BR, Batta K, Kishore AH, Mantelingu K, Varier RA, Balasubramanyam K, Pradhan SK, Dasgupta D, Sriram S, Agrawal S, Kundu TK. Identification of a novel inhibitor of coactivator-associated arginine methyltransferase 1 (CARM1)-mediated methylation of histone H3 Arg-17. J Biol Chem, 2010, 285(10): 7143–7152. <\p>
[17] Mishima Y, Miyagi S, Saraya A, Negishi M, Endoh M, Endo TA, Toyoda T, Shinga J, Katsumoto T, Chiba T, Ya-maguchi N, Kitabayashi I, Koseki H, Iwama A. The Hbo1-Brd1/Brpf2 complex is responsible for global ace-tylation of H3K14 and required for fetal liver erythropoi-esis. Blood, 2011, 118(9): 2443–2453. <\p>
[18] Wang C, Yao CF, Li YR, Cai WL, Bao XM, Girton J, Johansen J, Johansen KM. Evidence against a role for the JIL-1 kinase in H3S28 phosphorylation and 14–3-3 re-cruitment to active genes in Drosophila. PLoS ONE, 2013, 8(4): e62484. <\p>
[19] Yan QS, Dutt S, Xu R, Graves K, Juszczynski P, Manis JP, Shipp MA. BBAP monoubiquitylates histone H4 at lysine 91 and selectively modulates the DNA damage response. Mol Cell, 2009, 36(1): 110–120. <\p>
[20] 邢欣荣, 刘宇博, 程智逵, 伍会健. 组蛋白修饰酶对基因转录的调控. 生理科学进展, 2008, 39(4): 314–318. <\p>
[2 |