[1] Keene MA, Corces V, Lowenhaupt K, Elgin SC. DNase I hypersensitive sites in Drosophila chromatin occur at the 5′ ends of regions of transcription. Proc Natl Acad Sci USA, 1981, 78(1): 143-146.[2] Wu C. The 5′ ends of Drosophila heat shock genes in chromatin are hypersensitive to DNase I. Nature, 1980, 286(5776): 854-860.[3] Mcghee JD, Wood WI, Dolan M, Engel JD, Felsenfeld G. A 200-base pair region at the 5' end of the chicken adult β-globin gene is accessible to nuclease digestion. Cell, 1981, 27(1): 45-55.[4] Gross DS, Garrard WT. Nuclease hypersensitive sites in chromatin. Annu Rev Biochem, 1988, 57(1): 159-197.[5] Nedospasov SA, Georgiev GP. Non-random cleavage of SV40 DNA in the compact minichromosome and free in solution by micrococcal nuclease. Biochem Biophys Res Commun, 1980, 92(2): 532-539.[6] Kodama Y, Nagaya S, Shinmyo A, Kato K. Mapping and characterization of DNase I hypersensitive sites in Arabidopsis chromatin. Plant Cell Physiol, 2007, 48(3): 459-470.[7] Boyle AP, Davis S, Shulha HP, Meltzer P, Margulies EH, Weng ZP, Furey TS, Crawford GE. High-resolution mapping and characterization of open chromatin across the genome. Cell, 2008, 132(2): 311-322.[8] Fransz P, de Jong H. From nucleosome to chromosome: a dynamic organization of genetic information. Plant J, 2011, 66(1): 4-17.[9] Segal E, Widom J. What controls nucleosome positions? Trends Genet, 2009, 25(8): 335-343.[10] Kharchenko PV, Alekseyenko AA, Schwartz YB, Minoda A, Riddle NC, Ernst J, Sabo PJ, Larschan E, Gorchakov AA, Gu TT, Linder-Basso D, Plachetka A, Shanower G, Tolstorukov MY, Luquette LJ, Xi RB, Jung YL, Park RW, Bishop EP, Canfield TK, Sandstrom R, Thurman RE, MacAlpine DM, Stamatoyannopoulos JA, Kellis M, Elgin SCR, Kuroda MI, Pirrotta V, Karpen GH, Park PJ. Comprehensive analysis of the chromatin landscape in Drosophila melanogaster. Nature, 2011, 471(7339): 480-485.[11] Sabo PJ, Humbert R, Hawrylycz M, Wallace JC, Dorschner MO, McArthur M, Stamatoyannopoulos JA. Genome-wide identification of DNaseI hypersensitive sites using active chromatin sequence libraries. Proc Natl Acad Sci USA, 2004, 101(13): 4537-4542.[12] Hesselberth JR, Chen XY, Zhang ZH, Sabo PJ, Sandstrom R, Reynolds AP, Thurman RE, Neph S, Kuehn MS, Noble WS, Fields S, Stamatoyannopoulos JA. Global mapping of protein-DNA interactions in vivo by digital genomic foot-printing. Nat Methods, 2009, 6(4): 283-289.[13] Zhang WL, Wu YF, Schnable JC, Zeng ZX, Freeling M, Crawford GE, Jiang JM. High-resolution mapping of open chromatin in the rice genome. Genome Res, 2012, 22(1): 151-162.[14] Zhang WL, Zhang T, Wu YF, Jiang JM. Genome-wide identification of regulatory DNA elements and protein-binding footprints using signatures of open chromatin in Arabidopsis. Plant Cell, 2012, 24(7): 2719-2731.[15] Boyle AP, Guinney J, Crawford GE, Furey TS. F-Seq: a feature density estimator for high-throughput sequence tags. Bioinformatics, 2008, 24(21): 2537-2538.[16] Iida K, Kawaguchi S, Kobayashi N, Yoshida Y, Ishii M, Harada E, Hanada K, Matsui A, Okamoto M, Ishida J, Tanaka M, Morosawa T, Toyoda T. ARTADE2DB: Improved statistical inferences for Arabidopsis gene functions and structure predictions by dynamic structure-based dynamic expression (DSDE) analyses. Plant Cell Physiol, 2011, 52(2): 254-264.[17] Matsui A, Ishida J, Morosawa T, Mochizuki Y, Kaminuma E, Endo TA, Okamoto M, Nambara E, Nakajima M, Kawashima M, Satou M, Kim JM, Kobayashi N, Toyoda T, Shinozaki K, Seki M. Arabidopsis transcriptome analysis under drought, cold, high-salinity and ABA treatment conditions using a tiling array. Plant Cell Physiol, 2008, 49(8): 1135-1149.[18] Okamoto M, Tatematsu K, Matsui A, Morosawa T, Ishida J, Tanaka M, Endo TA, Mochizuki Y, Toyoda T, Kamiya Y, Shinozaki K, Nambara E, Seki M. Genome-wide analysis of endogenous abscisic acid-mediated transcription in dry and imbibed seeds of Arabidopsis using tiling arrays. Plant J, 2010, 62(1): 39-51.[19] Jeddeloh JA, Bender J, Richards EJ. The DNA methylation locus DDM1 is required for maintenance of gene silencing in Arabidopsis. Genes Dev, 1998, 12(11): 1714-1725.[20] Kakutani T, Munakata K, Richards EJ, Hirochika H. Meiotically and mitotically stable inheritance of DNA hypomethylation induced by ddm1 mutation of Arabidopsis thaliana. Genetics, 1999, 151(2): 831-838.[21] Jeddeloh JA, Stokes TL, Richards EJ. Maintenance of genomic methylation requires a SW12/SNF2-like protein. Nat Genet, 1999, 22(1): 94-97.[22] Kakutani T, Jeddeloh JA, Richards EJ. Characterization of an Arabidopsis thaliana DNA hypomethylation mutant. Nucleic Acids Res, 1995, 23(1): 130-137.[23] Vongs A, Kakutani T, Martienssen RA, Richards EJ. Arabidopsis thaliana DNA methylation mutants. Science, 1993, 260(5116): 1926-1928.[24] Lippman Z, Gendrel AV, Black M, Vaughn MW, Dedhia N, McCombie WR, Lavine K, Mittal V, May B, Kasschau KD, Carrington JC, Doerge RW, Colot V, Martienssen R. Role of transposable elements in heterochromatin and epigenetic control. Nature, 2004, 430(6998): 471-476.[25] Zhang XY, Germann S, Blus BJ, Khorasanizadeh S, Gaudin V, Jacobsen SE. The Arabidopsis LHP1 protein colocalizes with histone H3 Lys27 trimethylation. Nat Struct Mol Biol, 2007, 14(9): 869-871.[26] Zhou JL, Wang XF, He K, Charron JB, Elling AA, Deng XW. Genome-wide profiling of histone H3 lysine 9 acety-lation and dimethylation in Arabidopsis reveals correlation between multiple histone marks and gene expression. Plant Mol Biol, 2010, 72(6): 585-595.[27] Zilberman D, Coleman-Derr D, Ballinger T, Henikoff S. Histone H2A. Z and DNA methylation are mutually an-tagonistic chromatin marks. Nature, 2008, 456(7218): 125-129.[28] Zhang XY, Bernatavichute YV, Cokus S, Pellegrini M, Jacobsen SE. Genome-wide analysis of mono-, di- and trimethylation of histone H3 lysine 4 in Arabidopsis thaliana. Genome Biol, 2009, 10(6): R62.[29] Maniatis T, Ptashne M. Structure of the λ operators. Nature, 1973, 246(5429): 133-136.[30] Galas DJ, Schmitz A. DNAse footprinting: a simple method for the detection of protein-DNA binding specificity. Nucleic Acids Res, 1978, 5(9): 3157-3170.[31] Cockerill PN. Structure and function of active chromatin and DNase I hypersensitive sites. Febs J, 2011, 278(13): 2182-2210.[32] Boyle AP, Song LY, Lee BK, London D, Keefe D, Birney E, Iyer VR, Crawford GE, Furey TS. High-resolution genome-wide in vivo footprinting of diverse transcription factors in human cells. Genome Res, 2011, 21(3): 456-464.[33] Song LY, Zhang ZC, Grasfeder LL, Boyle AP, Giresi PG, Lee BK, Sheffield NC, Gräf S, Huss M, Keefe D, Liu Z, London D, McDaniell RM, Shibata Y, Showers KA, Simon JM, Vales T, Wang TY, Winter D, Zhang ZZ, Clarke ND, Birney E, Iyer VR, Crawford GE, Lieb JD, Furey TS. Open chromatin defined by DNaseI and FAIRE identifies regulatory elements that shape cell-type identity. Genome Res, 2011, 21(10): 1757-1767.[34] Sakai H, Medrano LJ, Meyerowitz EM. Role of SUPERMAN in maintaining Arabidopsis floral whorl boundaries. Nature, 1995, 378(6553): 199-203.[35] Riechmann JL, Krizek BA, Meyerowitz EM. Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS. Proc Natl Acad Sci USA, 1996, 93(10): 4793-4798.[36] The ENCODE Project Consortium. An integrated ency-clopedia of DNA elements in the human genome. Nature, 2012, 489(7414): 57-74. |