遗传 ›› 2010, Vol. 32 ›› Issue (4): 307-330.doi: 10.3724/SP.J.1005.2010.00307
王勇1, 姚勤2, 陈克平2
收稿日期:
2009-09-10
修回日期:
2009-12-05
出版日期:
2010-04-20
发布日期:
2010-04-14
通讯作者:
陈克平
E-mail:kpchen@ujs.edu.cn
基金资助:
江苏大学高级人才科研启动基金项目(编号:09JDG029)和江苏省农业科技支撑项目(编号:BE2008379)资助
WANG Yong1, YAO Qin2, CHEN Ke-Ping2
Received:
2009-09-10
Revised:
2009-12-05
Online:
2010-04-20
Published:
2010-04-14
Contact:
CHEN Ke-Ping
E-mail:kpchen@ujs.edu.cn
摘要: bHLH转录因子在真核生物生长发育调控过程中具有重要作用。动物bHLH转录因子包含45个家族, 分别参与调控神经元发生、肌细胞生成、肠组织发育以及环境毒素响应等生物学过程。过去20年里, 研究人员对动物bHLH家族成员鉴定及其生物学功能开展了广泛的研究。文章在介绍动物45个bHLH家族名称来源的基础上, 综述了小鼠、果蝇和线虫3种模式动物bHLH家族成员及其功能的研究进展。小鼠、果蝇和线虫中分别有114、59和42种bHLH蛋白。其中, 小鼠108种、果蝇47种和线虫20种bHLH蛋白的功能已比较明确, 功能未知的22种线虫bHLH蛋白中还有15种尚未归入相应家族。文章也对部分被误用的bHLH家族成员名称做了说明, 可为相关研究人员深入开展bHLH转录因子结构与功能的研究提供较为清晰和系统的背景资料。
王勇,姚勤,陈克平. 动物bHLH转录因子家族成员及其功能[J]. 遗传, 2010, 32(4): 307-330.
WANG Yong, TAO Qi, CHEN Ke-Beng. Progress of studies on family members and functions of animal bHLH transcription factors[J]. HEREDITAS, 2010, 32(4): 307-330.
[1] Murre C, McCaw PS, Baltimore D. A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD, and myc proteins. Cell, 1989, 56(5): 777–783. [2] Barnes RM, Firulli AB. A twist of insight-the role of Twist-family bHLH factors in development. Int J Dev Biol, 2009, 53(7): 909–924. [3] Kageyama R, Ohtsuka T, Kobayashi T. Roles of Hes genes in neural development. Dev Growth Differ, 2008, 50(Suppl 1): S97–103. [4] 郇林春, 赵旺淼, 杨新宇, 杨树源. Hes1蛋白在神经细胞生成中的作用. 国际神经病学神经外科学杂志, 2008, 35(5): 438–411. [5] 王敏, 郑燕, 郏雁飞, 李彬彬, 汪运山. 转录调节因子DEC1的研究进展. 山东科学, 2008, 21(4): 29–35. [6] 王勇, 陈克平, 姚勤. bHLH转录因子家族研究进展. 遗传, 2008, 30(7): 821–830. [7] Massari ME, Murre C. Helix-loop-helix proteins: regula-tors of transcription in eucaryotic organisms. Mol Cell Biol, 2000, 20(2): 429–440. [8] Garcia-Bellido A. Genetic analysis of the Achaete-Scute system of Drosophila melanogaster. Genetics, 1979, 91(3): 491–520. [9] Carramolino L, Ruiz-Gomez M, Guerrero MD, Campuzano S, Modolell J. DNA map of mutations at the scute locus of Drosophila melanogaster. Embo J, 1982, 1(10): 1185–1191. [10] Ledent V, Vervoort M. The basic helix-loop-helix protein family: comparative genomics and phylogenetic analysis. Genome Res, 2001, 11(5): 754–770. [11] Ledent V, Paquet O, Vervoort M. Phylogenetic analysis of the human basic helix-loop-helix proteins. Genome Biol, 2002, 3(6): RESEARCH0030. [12] Cubas P, de Celis JF, Campuzano S, Modolell J. Proneural clusters of achaete-scute expression and the generation of sensory organs in the Drosophila imaginal wing disc. Genes Dev, 1991, 5(6): 996–1008. [13] Carmena A, Bate M, Jimenez F. Lethal of scute, a proneural gene, participates in the specification of muscle progenitors during Drosophila embryogenesis. Genes Dev, 1995, 9(19): 2373–2383. [14] Deshpande G, Stukey J, Schedl P. scute (sis-b) function in Drosophila sex determination. Mol Cell Biol, 1995, 15(8): 4430–4440. [15] Gonzalez F, Romani S, Cubas P, Modolell J, Campuzano S. Molecular analysis of the asense gene, a member of the achaete-scute complex of Drosophila melanogaster, and its novel role in optic lobe development. Embo J, 1989, 8(12): 3553–3562. [16] Johnson JE, Zimmerman K, Saito T, Anderson DJ. Induc-tion and repression of mammalian achaete-scute homo-logue (MASH) gene expression during neuronal differen-tiation of P19 embryonal carcinoma cells. Development, 1992, 114(1): 75–87. [17] Berninger B, Costa MR, Koch U, Schroeder T, Sutor B, Grothe B, Gotz M. Functional properties of neurons de-rived from in vitro reprogrammed postnatal astroglia. J Neurosci, 2007, 27(32): 8654–8664. [18] Tanaka M, Gertsenstein M, Rossant J, Nagy A. Mash2 acts cell autonomously in mouse spongiotrophoblast devel-opment. Dev Biol, 1997, 190(1): 55–65. [19] Doonan R, Hatzold J, Raut S, Conradt B, Alfonso A. HLH-3 is a C. elegans Achaete/Scute protein required for differentiation of the hermaphrodite-specific motor neurons. Mech Dev, 2008, 125(9-10): 883–893. [20] Frank CA, Baum PD, Garriga G: HLH-14 is a C. elegans achaete-scute protein that promotes neurogenesis through asymmetric cell division. Development, 2003, 130(26): 6507–6518. [21] Zheng X, Wang Y, Yao Q, Yang Z, Chen K. A genome-wide survey on basic helix-loop-helix transcription factors in rat and mouse. Mamm Genome, 2009, 20(4): 236–246. [22] Bullard T, Koek L, Roztocil E, Kingsley PD, Mirels L, Ovitt CE. Ascl3 expression marks a progenitor population of both acinar and ductal cells in mouse salivary glands. Dev Biol, 2008, 320(1): 72–78. [23] Jonsson M, Bjorntorp Mark E, Brantsing C, Brandner JM, Lindahl A, Asp J. Hash4, a novel human achaete-scute homologue found in fetal skin. Genomics, 2004, 84(5): 859–866. [24] Smit RB, Schnabel R, Gaudet J. The HLH-6 transcription factor regulates C. elegans pharyngeal gland development and function. PLoS Genet, 2008, 4(10): e1000222. [25] Tapscott SJ, Davis RL, Thayer MJ, Cheng PF, Weintraub H, Lassar AB. MyoD1: a nuclear phosphoprotein requiring a Myc homology region to convert fibroblasts to myoblasts. Science, 1988, 242(4877): 405–411. [26] Wright WE, Sassoon DA, Lin VK. Myogenin, a factor regulating myogenesis, has a domain homologous to MyoD. Cell, 1989, 56(4): 607–617. [27] Braun T, Buschhausen-Denker G, Bober E, Tannich E, Arnold HH. A novel human muscle factor related to but distinct from MyoD1 induces myogenic conversion in 10T1/2 fibroblasts. Embo J, 1989, 8(3): 701–709. [28] Braun T, Bober E, Winter B, Rosenthal N, Arnold HH. Myf-6, a new member of the human gene family of myo-genic determination factors: evidence for a gene cluster on chromosome 12. Embo J, 1990, 9(3): 821–831. [29] Rhodes SJ, Konieczny SF. Identification of MRF4: a new member of the muscle regulatory factor gene family. Genes Dev, 1989, 3(12B): 2050–2061. [30] Gessler M, Hameister H, Henry I, Junien C, Braun T, Arnold HH. The human MyoD1 (MYF3) gene maps on the short arm of chromosome 11 but is not associated with the WAGR locus or the region for the Beckwith-Wiedemann syndrome. Hum Genet, 1990, 86(2): 135–138. [31] Gensch N, Borchardt T, Schneider A, Riethmacher D, Braun T. Different autonomous myogenic cell populations revealed by ablation of Myf5-expressing cells during mouse embryogenesis. Development, 2008, 135(9): 1597–1604. [32] Meadows E, Cho JH, Flynn JM, Klein WH. Myogenin regulates a distinct genetic program in adult muscle stem cells. Dev Biol, 2008, 322(2): 406–414. [33] Kerst B, Mennerich D, Schuelke M, Stoltenburg-Didinger G, von Moers A, Gossrau R, van Landeghem FK, Speer A, Braun T, Hubner C. Heterozygous myogenic factor 6 mu-tation associated with myopathy and severe course of Becker muscular dystrophy. Neuromuscul Disord, 2000, 10(8): 572–577. [34] Paterson BM, Shirakata M, Nakamura S, Dechesne C, Walldorf U, Eldridge J, Dubendorfer A, Frasch M, Ge-hring WJ. Isolation and functional comparison of Dmyd, the Drosophila homologue of the vertebrate myogenic de-termination genes, with CMD1. Symp Soc Exp Biol, 1992, 46: 89–109. [35] Chen L, Krause M, Sepanski M, Fire A. The Caenorhabditis elegans MYOD homologue HLH-1 is essential for proper muscle function and complete morphogenesis. Development, 1994, 120(6): 1631–1641. [36] Moss LG, Moss JB, Rutter WJ. Systematic binding analy-sis of the insulin gene transcription control region: insulin and immunoglobulin enhancers utilize similar transacti-vators. Mol Cell Biol, 1988, 8(6): 2620–2627. [37] Mellentin JD, Murre C, Donlon TA, McCaw PS, Smith SD, Carroll AJ, McDonald ME, Baltimore D, Cleary ML. The gene for enhancer binding proteins E12/E47 lies at the t(1;19) breakpoint in acute leukemias. Science, 1989, 246(4928): 379–382. [38] Henthorn P, Kiledjian M, Kadesch T. Two distinct tran-scription factors that bind the immunoglobulin enhancer mi-croE5/kappa 2 motif. Science, 1990, 247(4941): 467–470. [39] Zhang Y, Babin J, Feldhaus AL, Singh H, Sharp PA, Bina M. HTF4: a new human helix-loop-helix protein. Nucleic Acids Res, 1991, 19(16): 4555. [40] Zhuang Y, Soriano P, Weintraub H. The helix-loop-helix gene E2A is required for B cell formation. Cell, 1994, 79(5): 875–884. [41] Brown NL, Paddock SW, Sattler CA, Cronmiller C, Thomas BJ, Carroll SB. Daughterless is required for Drosophila pho-toreceptor cell determination, eye morphogenesis, and cell cycle progression. Dev Biol, 1996, 179(1): 65–78. [42] Karp X, Greenwald I. Multiple roles for the E/Daughterless ortholog HLH-2 during C. elegans gonadogenesis. Dev Biol, 2004, 272(2): 460–469. [43] Ma Q, Kintner C, Anderson DJ. Identification of neuro-genin, a vertebrate neuronal determination gene. Cell, 1996, 87(1): 43–52. [44] Sommer L, Ma Q, Anderson DJ. Neurogenins, a novel family of atonal-related bHLH transcription factors, are putative mammalian neuronal determination genes that reveal progenitor cell heterogeneity in the developing CNS and PNS. Mol Cell Neurosci, 1996, 8(4): 221–241. [45] Ma Q, Chen Z, del Barco Barrantes I, de la Pompa JL, Anderson DJ. Neurogenin1 is essential for the determination of neuronal precursors for proximal cranial sensory ganglia. Neuron, 1998, 20(3): 469–482. [46] Ozen I, Galichet C, Watts C, Parras C, Guillemot F, Raineteau O. Proliferating neuronal progenitors in the postnatal hippocampus transiently express the proneural gene Ngn2. Eur J Neurosci, 2007, 25(9): 2591–2603. [47] Yoshida S, Takakura A, Ohbo K, Abe K, Wakabayashi J, Yamamoto M, Suda T, Nabeshima Y. Neurogenin3 deline-ates the earliest stages of spermatogenesis in the mouse testis. Dev Biol, 2004, 269(2): 447–458. [48] Gautier P, Ledent V, Massaer M, Dambly-Chaudiere C, Ghysen A. Tap, a Drosophila bHLH gene expressed in chemosensory organs. Gene, 1997, 191(1): 15–21. [49] Lee JE, Hollenberg SM, Snider L, Turner DL, Lipnick N, Weintraub H. Conversion of Xenopus ectoderm into neu-rons by NeuroD, a basic helix-loop-helix protein. Science, 1995, 268(5212): 836–844. [50] McCormick MB, Tamimi RM, Snider L, Asakura A, Bergstrom D, Tapscott SJ. NeuroD2 and neuroD3: distinct expression patterns and transcriptional activation poten-tials within the neuroD gene family. Mol Cell Biol, 1996, 16(10): 5792–5800. [51] Takebayashi K, Takahashi S, Yokota C, Tsuda H, Naka-nishi S, Asashima M, Kageyama R. Conversion of ecto-derm into a neural fate by ATH-3, a vertebrate basic he-lix-loop-helix gene homologous to Drosophila proneural gene atonal. Embo J, 1997, 16(2): 384–395. [52] Shimizu C, Akazawa C, Nakanishi S, Kageyama R. MATH-2, a mammalian helix-loop-helix factor structurally related to the product of Drosophila proneural gene atonal, is spe-cifically expressed in the nervous system. Eur J Biochem, 1995, 229(1): 239–248. [53] Liu H, Etter P, Hayes S, Jones I, Nelson B, Hartman B, Forrest D, Reh TA. NeuroD1 regulates expression of thy-roid hormone receptor 2 and cone opsins in the developing mouse retina. J Neurosci, 2008, 28(3): 749–756. [54] Sugimoto Y, Furuno T, Nakanishi M. Effect of NeuroD2 expression on neuronal differentiation in mouse embryonic stem cells. Cell Biol Int, 2009, 33(2): 174–179. [55] Tsuda H, Takebayashi K, Nakanishi S, Kageyama R. Structure and promoter analysis of Math3 gene, a mouse homolog of Drosophila proneural gene atonal. Neu-ral-specific expression by dual promoter elements. J Biol Chem, 1998, 273(11): 6327–6333. [56] Hallam S, Singer E, Waring D, Jin Y. The C. elegans NeuroD homolog cnd-1 functions in multiple aspects of motor neuron fate specification. Development, 2000, 127(19): 4239–4252. [57] Jarman AP, Grau Y, Jan LY, Jan YN. Atonal is a proneural gene that directs chordotonal organ formation in the Dro-sophila peripheral nervous system. Cell, 1993, 73(7): 1307–1321. [58] Brown NL, Kanekar S, Vetter ML, Tucker PK, Gemza DL, Glaser T. Math5 encodes a murine basic helix-loop-helix transcription factor expressed during early stages of retinal neurogenesis. Development, 1998, 125(23): 4821–4833. [59] Inoue C, Bae SK, Takatsuka K, Inoue T, Bessho Y, Kageyama R. Math6, a bHLH gene expressed in the de-veloping nervous system, regulates neuronal versus glial differentiation. Genes Cells, 2001, 6(11): 977–986. [60] Goulding SE, White NM, Jarman AP. Cato encodes a ba-sic helix-loop-helix transcription factor implicated in the correct differentiation of Drosophila sense organs. Dev Biol, 2000, 221(1): 120–131. [61] zur Lage PI, Prentice DR, Holohan EE, Jarman AP. The Drosophila proneural gene amos promotes olfactory sen-sillum formation and suppresses bristle formation. Development, 2003, 130(19): 4683–4693. [62] Akazawa C, Ishibashi M, Shimizu C, Nakanishi S, Kageyama R. A mammalian helix-loop-helix factor struc-turally related to the product of Drosophila proneural gene atonal is a positive transcriptional regulator expressed in the developing nervous system. J Biol Chem, 1995, 270(15): 8730–8738. [63] Portman DS, Emmons SW. The basic helix-loop-helix transcription factors LIN-32 and HLH-2 function together in multiple steps of a C. elegans neuronal sublineage. Development, 2000, 127(24): 5415–5426. [64] Lemercier C, To RQ, Swanson BJ, Lyons GE, Konieczny SF. Mist1: a novel basic helix-loop-helix transcription factor exhibits a developmentally regulated expression pattern. Dev Biol, 1997, 182(1): 101–113. [65] Pin CL, Rukstalis JM, Johnson C, Konieczny SF. The bHLH transcription factor Mist1 is required to maintain exocrine pancreas cell organization and acinar cell identity. J Cell Biol, 2001, 155(4): 519–530. [66] Hewes RS, Park D, Gauthier SA, Schaefer AM, Taghert PH: the bHLH protein Dimmed controls neuroendocrine cell differentiation in Drosophila. Development, 2003, 130(9): 1771–1781. [67] Peyton M, Moss LG, Tsai MJ. Two distinct class A he-lix-loop-helix transcription factors, E2A and BETA1, form separate DNA binding complexes on the insulin gene E box. J Biol Chem, 1994, 269(41): 25936–25941. [68] Naya FJ, Stellrecht CM, Tsai MJ. Tissue-specific regulation of the insulin gene by a novel basic helix-loop-helix tran-scription factor. Genes Dev, 1995, 9(8): 1009–1019. [69] Peyton M, Stellrecht CM, Naya FJ, Huang HP, Samora PJ, Tsai MJ. BETA3, a novel helix-loop-helix protein, can act as a negative regulator of BETA2 and MyoD-responsive genes. Mol Cell Biol, 1996, 16(2): 626–633. [70] Kim MH, Gunnersen J, Augustine C, Tan SS. Re-gion-specific expression of the helix-loop-helix gene BETA3 in developing and adult brains. Mech Dev, 2002, 114(1–2): 125–128. [71] Bramblett DE, Copeland NG, Jenkins NA, Tsai MJ. BHLHB4 is a bHLH transcriptional regulator in pancreas and brain that marks the dimesencephalic boundary. Genomics, 2002, 79(3): 402–412. [72] McMiller TL, Johnson CM. Molecular characterization of HLH-17, a C. elegans bHLH protein required for normal larval development. Gene, 2005, 356: 1–10. [73] Zhou Q, Wang S, Anderson DJ. Identification of a novel family of oligodendrocyte lineage-specific basic helix-loop- helix transcription factors. Neuron, 2000, 25(2): 331–343. [74] Ding L, Takebayashi H, Watanabe K, Ohtsuki T, Tanaka KF, Nabeshima Y, Chisaka O, Ikenaka K, Ono K. Short-term lineage analysis of dorsally derived Olig3 cells in the developing spinal cord. Dev Dynam, 2005, 234(3): 622–632. [75] Brentrup D, Lerch H, Jackle H, Noll M. Regulation of Dro-sophila wing vein patterning: net encodes a bHLH protein repressing rhomboid and is repressed by rhomboid-dependent Egfr signalling. Development, 2000, 127(21): 4729–4741. [76] Portman DS, Emmons SW. Identification of C. elegans sensory ray genes using whole-genome expression profil-ing. Dev Biol, 2004, 270(2): 499–512. [77] Saga Y, Hata N, Kobayashi S, Magnuson T, Seldin MF, Taketo MM. MesP1: a novel basic helix-loop-helix protein expressed in the nascent mesodermal cells during mouse gastrulation. Development, 1996, 122(9): 2769–2778. [78] Saga Y, Hata N, Koseki H, Taketo MM. Mesp2: a novel mouse gene expressed in the presegmented mesoderm and essential for segmentation initiation. Genes Dev, 1997, 11(14): 1827–1839. [79] Yoon JK, Moon RT, Wold B. The bHLH class protein pMesogenin1 can specify paraxial mesoderm phenotypes. Dev Biol, 2000, 222(2): 376–391. [80] Chandrasekaran V, Beckendorf SK. Senseless is necessary for the survival of embryonic salivary glands in Drosophila. Development, 2003, 130(19): 4719–4728. [81] Castanon I, Von Stetina S, Kass J, Baylies MK. Dimeriza-tion partners determine the activity of the Twist bHLH protein during Drosophila mesoderm development. Development, 2001, 128(16): 3145–3159. [82] Hebrok M, Wertz K, Fuchtbauer EM. M-twist is an inhibitor of muscle differentiation. Dev Biol, 1994, 165(2): 537–544. [83] Li L, Cserjesi P, Olson EN. Dermo-1: a novel twist-related bHLH protein expressed in the developing dermis. Dev Biol, 1995, 172(1): 280–292. [84] Corsi AK, Kostas SA, Fire A, Krause M. Caenorhabditis elegans twist plays an essential role in non-striated muscle development. Development, 2000, 127(10): 2041–2051. [85] Cserjesi P, Brown D, Ligon KL, Lyons GE, Copeland NG, Gilbert DJ, Jenkins NA, Olson EN. Scleraxis: a basic he-lix-loop-helix protein that prefigures skeletal formation during mouse embryogenesis. Development, 1995, 121(4): 1099–1110. [86] Burgess R, Cserjesi P, Ligon KL, Olson EN. Paraxis: a basic helix-loop-helix protein expressed in paraxial mesoderm and developing somites. Dev Biol, 1995, 168(2): 296–306. [87] Lu J, Webb R, Richardson JA, Olson EN. MyoR: a mus-cle-restricted basic helix-loop-helix transcription factor that antagonizes the actions of MyoD. Proc Natl Acad Sci USA, 1999, 96(2): 552–557. [88] Simionato E, Ledent V, Richards G, Thomas-Chollier M, Kerner P, Coornaert D, Degnan BM, Vervoort M. Origin and diversification of the basic helix-loop-helix gene fam-ily in metazoans: insights from comparative genomics. BMC Evol Biol, 2007, 7: 33. [89] Quaggin SE, Vanden Heuvel GB, Igarashi P. Pod-1, a mesoderm-specific basic-helix-loop-helix protein expressed in mesenchymal and glomerular epithelial cells in the de-veloping kidney. Mech Dev, 1998, 71(1–2): 37–48. [90] Georgias C, Wasser M, Hinz U. A basic-helix-loop-helix protein expressed in precursors of Drosophila longitudinal visceral muscles. Mech Dev, 1997, 69(1–2): 115–124. [91] Narumi O, Mori S, Boku S, Tsuji Y, Hashimoto N, Nishi-kawa S, Yokota Y. OUT, a novel basic helix-loop- helix transcription factor with an Id-like inhibitory activity. J Biol Chem, 2000, 275(5): 3510–3521. [92] Armand P, Knapp AC, Hirsch AJ, Wieschaus EF, Cole MD. A novel basic helix-loop-helix protein is expressed in muscle attachment sites of the Drosophila epidermis. Mol Cell Biol, 1994, 14(6): 4145–4154. [93] Cserjesi P, Brown D, Lyons GE, Olson EN. Expression of the novel basic helix-loop-helix gene eHAND in neural crest derivatives and extraembryonic membranes during mouse development. Dev Biol, 1995, 170(2): 664–678. [94] Srivastava D, Thomas T, Lin Q, Kirby ML, Brown D, Olson EN. Regulation of cardiac mesodermal and neural crest development by the bHLH transcription factor, dHAND. Nat Genet, 1997, 16(2): 154–160. [95] Han Z, Yi P, Li X, Olson EN. Hand, an evolutionarily conserved bHLH transcription factor required for Droso-phila cardiogenesis and hematopoiesis. Development, 2006, 133(6): 1175–1182. [96] Mathies LD, Henderson ST, Kimble J. The C. elegans Hand gene controls embryogenesis and early gonadogene-sis. Development, 2003, 130(13): 2881–2892. [97] Cockell M, Stevenson BJ, Strubin M, Hagenbuchle O, Wellauer PK. Identification of a cell-specific DNA-binding activity that interacts with a transcriptional activator of genes expressed in the acinar pancreas. Mol Cell Biol, 1989, 9(6): 2464–2476. [98] Sommer L, Hagenbuchle O, Wellauer PK, Strubin M. Nu-clear targeting of the transcription factor PTF1 is mediated by a protein subunit that does not bind to the PTF1 cog-nate sequence. Cell, 1991, 67(5): 987–994. [99] Roux E, Strubin M, Hagenbuchle O, Wellauer PK. The cell-specific transcription factor PTF1 contains two dif-ferent subunits that interact with the DNA. Genes Dev, 1989, 3(10): 1613–1624. [100] Krapp A, Knofler M, Ledermann B, Burki K, Berney C, Zoerkler N, Hagenbuchle O, Wellauer PK. The bHLH protein PTF1-p48 is essential for the formation of the exocrine and the correct spatial organization of the endo-crine pancreas. Genes Dev, 1998, 12(23): 3752–3763. [101] Segev E, Halachmi N, Salzberg A, Ben-Arie N. Nato3 is an evolutionarily conserved bHLH transcription factor expressed in the CNS of Drosophila and mouse. Mech Dev, 2001, 106(1–2): 197–202. [102] Begley CG, Aplan PD, Davey MP, Nakahara K, Tchorz K, Kurtzberg J, Hershfield MS, Haynes BF, Cohen DI, Waldmann TA, KirSch IR. Chromosomal translocation in a human leukemic stem-cell line disrupts the T-cell anti-gen receptor delta-chain diversity region and results in a previously unreported fusion transcript. Proc Natl Acad Sci USA, 1989, 86(6): 2031–2035. [103] Brown L, Cheng JT, Chen Q, Siciliano MJ, Crist W, Bu-chanan G, Baer R. Site-specific recombination of the tal-1 gene is a common occurrence in human T cell leukemia. Embo J, 1990, 9(10): 3343–3351. [104] Xia Y, Brown L, Yang CY, Tsan JT, Siciliano MJ, Espinosa R, III, Le Beau MM, Baer RJ. TAL2, a he-lix-loop-helix gene activated by the (7; 9)(q34; q32) trans-location in human T-cell leukemia. Proc Natl Acad Sci USA, 1991, 88(24): 11416–11420. [105] Mellentin JD, Smith SD, Cleary ML. lyl-1, a novel gene altered by chromosomal translocation in T cell leukemia, codes for a protein with a helix-loop-helix DNA binding motif. Cell, 1989, 58(1): 77–83. [106] Baer R. TAL1, TAL2 and LYL1: a family of basic helix- loop-helix proteins implicated in T cell acute leukaemia. Semin Cancer Biol, 1993, 4(6): 341–347. [107] Varterasian M, Lipkowitz S, Karsch-Mizrachi I, Paterson B, Kirsch I. Two new Drosophila genes related to human hematopoietic and neurogenic transcription factors. Cell Growth Differ, 1993, 4(11): 885–889. [108] Begley CG, Lipkowitz S, Gobel V, Mahon KA, Bertness V, Green AR, Gough NM, Kirsch IR. Molecular characteri-zation of NSCL, a gene encoding a helix-loop-helix pro-tein expressed in the developing nervous system. Proc Natl Acad Sci USA, 1992, 89(1): 38–42. [109] Gobel V, Lipkowitz S, Kozak CA, Kirsch IR. NSCL-2: a basic domain helix-loop-helix gene expressed in early neurogenesis. Cell Growth Differ, 1992, 3(3): 143–148. [110] Onate SA, Tsai SY, Tsai MJ, O'Malley BW. Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science, 1995, 270(5240): 1354–1357. [111] Voegel JJ, Heine MJ, Zechel C, Chambon P, Gronemeyer H. TIF2, a 160 kDa transcriptional mediator for the ligand-dependent activation function AF-2 of nuclear re-ceptors. Embo J, 1996, 15(14): 3667–3675. [112] Hong H, Kohli K, Garabedian MJ, Stallcup MR. GRIP1, a transcriptional coactivator for the AF-2 transactivation domain of steroid, thyroid, retinoid, and vitamin D re-ceptors. Mol Cell Biol, 1997, 17(5): 2735–2744. [113] Li H, Gomes PJ, Chen JD. RAC3, a steroid/nuclear re-ceptor-associated coactivator that is related to SRC-1 and TIF2. Proc Natl Acad Sci USA, 1997, 94(16): 8479–8484. [114] Torchia J, Rose DW, Inostroza J, Kamei Y, Westin S, Glass CK, Rosenfeld MG. The transcriptional co-activator p/CIP binds CBP and mediates nuclear-receptor function. Nature, 1997, 387(6634): 677–684. [115] Zhu Y, Qi C, Calandra C, Rao MS, Reddy JK. Cloning and identification of mouse steroid receptor coactivator-1 (mSRC-1), as a coactivator of peroxisome proliferator- activated receptor gamma. Gene Expr, 1996, 6(3): 185–195. [116] Chen SL, Dowhan DH, Hosking BM, Muscat GE. The steroid receptor coactivator, GRIP-1, is necessary for MEF-2C-dependent gene expression and skeletal muscle differentiation. Genes Dev, 2000, 14(10): 1209–1228. [117] Jang AC, Chang YC, Bai J, Montell D. Border-cell migra-tion requires integration of spatial and temporal signals by the BTB protein Abrupt. Nat Cell Biol, 2009, 11(5): 569–579. [118] Liang L, Soyal SM, Dean J. FIGα, a germ cell specific transcription factor involved in the coordinate expression of the zona pellucida genes. Development, 1997, 124(24): 4939–4947. [119] Dean J. Oocyte-specific genes regulate follicle formation, fertility and early mouse development. J Reprod Immunol, 2002, 53(1–2): 171–180. [120] Beug H, von Kirchbach A, Doderlein G, Conscience JF, Graf T. Chicken hematopoietic cells transformed by seven strains of defective avian leukemia viruses display three distinct phenotypes of differentiation. Cell, 1979, 18(2): 375–390. [121] Bister K, Ramsay G, Hayman MJ, Duesberg PH. OK10, an avian acute leukemia virus of the MC29 subgroup with a unique genetic structure. Proc Natl Acad Sci USA, 1980, 77(12): 7142–7146. [122] Chiswell DJ, Ramsay G, Hayman MJ. Two virus-specific RNA species are present in cells transformed by defective leukemia virus OK10. J Virol, 1981, 40(1): 301–304. [123] Vennstrom B, Sheiness D, Zabielski J, Bishop JM. Isola-tion and characterization of c-myc, a cellular homolog of the oncogene (v-myc) of avian myelocytomatosis virus strain 29. J Virol, 1982, 42(3): 773–779. [124] Laurenti E, Varnum-Finney B, Wilson A, Ferrero I, Blanco-Bose WE, Ehninger A, Knoepfler PS, Cheng PF, MacDonald HR, Eisenman RN, Bernstein ID, Trumpp A. Hematopoietic stem cell function and survival depend on c-Myc and N-Myc activity. Cell Stem Cell, 2008, 3(6): 611–624. [125] Sauvageau G, Perreault C. Killer granzyme B linked to N-myc- and c-myc-dependent HSC survival: isn't that comyc? Cell Stem Cell, 2008, 3(6): 579–580. [126] Shen J, Liu J, Xie Y, Diwan BA, Waalkes MP. Fetal onset of aberrant gene expression relevant to pulmonary car-cinogenesis in lung adenocarcinoma development induced by in utero arsenic exposure. Toxicol Sci, 2007, 95(2): 313–320. [127] Sugiyama A, Noguchi K, Kitanaka C, Katou N, Tashiro F, Ono T, Yoshida MC, Kuchino Y. Molecular cloning and chromosomal mapping of mouse intronless myc gene act-ing as a potent apoptosis inducer. Gene, 1999, 226(2): 273–283. [128] Schreiber-Agus N, Stein D, Chen K, Goltz JS, Stevens L, DePinho RA. Drosophila Myc is oncogenic in mammal-ian cells and plays a role in the diminutive phenotype. Proc Natl Acad Sci USA, 1997, 94(4): 1235–1240. [129] Blackwood EM, Eisenman RN. Max: a helix-loop-helix zipper protein that forms a sequence-specific DNA-binding complex with Myc. Science, 1991, 251(4998): 1211–1217. [130] Yuan J, Tirabassi RS, Bush AB, Cole MD. The C. elegans MDL-1 and MXL-1 proteins can functionally substitute for vertebrate MAD and MAX. Oncogene, 1998, 17(9): 1109–1118. [131] Pickett CL, Breen KT, Ayer DE. A C. elegans Myc-like network cooperates with semaphorin and Wnt signaling pathways to control cell migration. Dev Biol, 2007, 310(2): 226–239. [132] Foley KP, Eisenman RN. Two MAD tails: what the recent knockouts of Mad1 and Mxi1 tell us about the MYC/ MAX/MAD network. Biochim Biophys Acta, 1999, 1423(3): M37–47. [133] Hurlin PJ, Queva C, Koskinen PJ, Steingrimsson E, Ayer DE, Copeland NG, Jenkins NA, Eisenman RN. Mad3 and Mad4: novel Max-interacting transcriptional repressors that suppress c-myc dependent transformation and are expressed during neural and epidermal differentiation. Embo J, 1995, 14(22): 5646–5659. [134] Hurlin PJ, Queva C, Eisenman RN. Mnt, a novel Max-interacting protein is coexpressed with Myc in pro-liferating cells and mediates repression at Myc binding sites. Genes Dev, 1997, 11(1): 44–58. [135] Nilsson JA, Cleveland JL. Mnt: master regulator of the Max network. Cell Cycle, 2004, 3(5): 588–590. [136] Hurlin PJ, Queva C, Eisenman RN. Mnt: a novel Max-interacting protein and Myc antagonist. Curr Top Microbiol Immunol, 1997, 224: 115–121. [137] Loo LW, Secombe J, Little JT, Carlos LS, Yost C, Cheng PF, Flynn EM, Edgar BA, Eisenman RN. The transcrip-tional repressor dMnt is a regulator of growth in Droso-phila melanogaster. Mol Cell Biol, 2005, 25(16): 7078–7091. [138] Billin AN, Eilers AL, Queva C, Ayer DE. Mlx, a novel Max-like BHLHZip protein that interacts with the Max network of transcription factors. J Biol Chem, 1999, 274(51): 36344–36350. [139] Billin AN, Eilers AL, Coulter KL, Logan JS, Ayer DE. MondoA, a novel basic helix-loop-helix-leucine zipper transcriptional activator that constitutes a positive branch of a max-like network. Mol Cell Biol, 2000, 20(23): 8845–8854. [140] Peyrefitte S, Kahn D, Haenlin M. New members of the Drosophila Myc transcription factor subfamily revealed by a genome-wide examination for basic helix-loop-helix genes. Mech Dev, 2001, 104(1–2): 99–104. [141] Pirity M, Blanck JK, Schreiber-Agus N. Lessons learned from Myc/Max/Mad knockout mice. Curr Top Microbiol Immunol, 2006, 302: 205–234. [142] Billin AN, Ayer DE. The Mlx network: evidence for a parallel Max-like transcriptional network that regulates energy metabolism. Curr Top Microbiol Immunol, 2006, 302: 255–278. [143] Brohl D, Strehle M, Wende H, Hori K, Bormuth I, Nave KA, Muller T, Birchmeier C. A transcriptional network coordinately determines transmitter and peptidergic fate in the dorsal spinal cord. Dev Biol, 2008, 322(2): 381–393. [144] Jung HS, Kim KS, Chung YJ, Chung HK, Min YK, Lee MS, Lee MK, Kim KW, Chung JH. USF inhibits cell pro-liferation through delay in G2/M phase in FRTL-5 cells. Endocr J, 2007, 54(2): 275–285. [145] Sirito M, Walker S, Lin Q, Kozlowski MT, Klein WH, Sawadogo M. Members of the USF family of he-lix-loop-helix proteins bind DNA as homo- as well as het-erodimers. Gene Expr, 1992, 2(3): 231–240. [146] Hodgkinson CA, Moore KJ, Nakayama A, Steingrimsson E, Copeland NG, Jenkins NA, Arnheiter H. Mutations at the mouse microphthalmia locus are associated with de-fects in a gene encoding a novel basic-helix-loop-helix- zipper protein. Cell, 1993, 74(2): 395–404. [147] Tachibana M, Perez-Jurado LA, Nakayama A, Hodgkin-son CA, Li X, Schneider M, Miki T, Fex J, Francke U, Arnheiter H. Cloning of MITF, the human homolog of the mouse microphthalmia gene and assignment to chromo-some 3p14.1-p12.3. Hum Mol Genet, 1994, 3(4): 553–557. [148] Beckmann H, Su LK, Kadesch T. TFE3: a he-lix-loop-helix protein that activates transcription through the immunoglobulin enhancer μE3 motif. Genes Dev, 1990, 4(2): 167–179. [149] Carr CS, Sharp PA. A helix-loop-helix protein related to the immunoglobulin E box-binding proteins. Mol Cell Biol, 1990, 10(8): 4384–4388. [150] Fisher DE, Carr CS, Parent LA, Sharp PA. TFEB has DNA-binding and oligomerization properties of a unique helix-loop-helix/leucine-zipper family. Genes Dev, 1991, 5(12A): 2342–2352. [151] Zhao GQ, Zhao Q, Zhou X, Mattei MG, de Crombrugghe B. TFEC, a basic helix-loop-helix protein, forms het-erodimers with TFE3 and inhibits TFE3-dependent tran-scription activation. Mol Cell Biol, 1993, 13(8): 4505–4512. [152] Hallsson JH, Haflidadottir BS, Stivers C, Odenwald W, Arnheiter H, Pignoni F, Steingrimsson E. The basic he-lix-loop-helix leucine zipper transcription factor Mitf is conserved in Drosophila and functions in eye develop-ment. Genetics, 2004, 167(1): 233–241. [153] Yokoyama C, Wang X, Briggs MR, Admon A, Wu J, Hua X, Goldstein JL, Brown MS. SREBP-1, a ba-sic-helix-loop-helix-leucine zipper protein that controls transcription of the low density lipoprotein receptor gene. Cell, 1993, 75(1): 187–197. [154] Hua X, Yokoyama C, Wu J, Briggs MR, Brown MS, Goldstein JL, Wang X. SREBP-2, a second ba-sic-helix-loop-helix-leucine zipper protein that stimulates transcription by binding to a sterol regulatory element. Proc Natl Acad Sci USA, 1993, 90(24): 11603–11607. [155] Wang H, Liu F, Millette CF, Kilpatrick DL. Expression of a novel, sterol-insensitive form of sterol regulatory ele-ment binding protein 2 (SREBP2) in male germ cells suggests important cell- and stage-specific functions for SREBP targets during spermatogenesis. Mol Cell Biol, 2002, 22(24): 8478–8490. [156] Kunte AS, Matthews KA, Rawson RB. Fatty acid auxotrophy in Drosophila larvae lacking SREBP. Cell Metab, 2006, 3(6): 439–448. [157] Nomura T, Horikawa M, Shimamura S, Hashimoto T, Sa-kamoto K. Fat accumulation in Caenorhabditis elegans is mediated by SREBP homolog SBP-1. Genes Nutr, 2009 (Epub ahead of print). [158] Mermod N, Williams TJ, Tjian R. Enhancer binding fac-tors AP-4 and AP-1 act in concert to activate SV40 late transcription in vitro. Nature, 1988, 332(6164): 557–561. [159] Hu YF, Luscher B, Admon A, Mermod N, Tjian R. Tran-scription factor AP-4 contains multiple dimerization do-mains that regulate dimer specificity. Genes Dev, 1990, 4(10): 1741–1752. [160] Kim MY, Jeong BC, Lee JH, Kee HJ, Kook H, Kim NS, Kim YH, Kim JK, Ahn KY, Kim KK. A repressor com-plex, AP4 transcription factor and geminin, negatively regulates expression of target genes in nonneuronal cells. Proc Natl Acad Sci USA, 2006, 103(35): 13074–13079. [161] Lee SU, Song HO, Lee W, Singaravelu G, Yu JR, Park WY. Identification and characterization of a putative basic he-lix-loop-helix (bHLH) transcription factor interacting with calcineurin in C. elegans. Mol Cells, 2009 (Epub ahead of print). [162] Bjerknes M, Cheng H. TCFL4: a gene at 17q21.1 encod-ing a putative basic helix-loop-helix leucine-zipper tran-scription factor. Gene, 1996, 181(1–2): 7–11. [163] Huang ZJ, Edery I, Rosbash M. PAS is a dimerization domain common to Drosophila period and several tran-scription factors. Nature, 1993, 364(6434): 259–262. [164] Pellequer JL, Wager-Smith KA, Kay SA, Getzoff ED. Photoactive yellow protein: a structural prototype for the three-dimensional fold of the PAS domain superfamily. Proc Natl Acad Sci USA, 1998, 95(11): 5884–5890. [165] Okey AB, Bondy GP, Mason ME, Kahl GF, Eisen HJ, Guenthner TM, Nebert DW. Regulatory gene product of the Ah locus. Characterization of the cytosolic in-ducer-receptor complex and evidence for its nuclear translocation. J Biol Chem, 1979, 254(22): 11636–11648. [166] Burbach KM, Poland A, Bradfield CA. Cloning of the Ah-receptor cDNA reveals a distinctive ligand-activated transcription factor. Proc Natl Acad Sci USA, 1992, 89(17): 8185–8189. [167] Mimura J, Ema M, Sogawa K, Fujii-Kuriyama Y. Identi-fication of a novel mechanism of regulation of Ah (dioxin) receptor function. Genes Dev, 1999, 13(1): 20–25. [168] Kim MD, Jan LY, Jan YN. The bHLH-PAS protein Spineless is necessary for the diversification of dendrite morphology of Drosophila dendritic arborization neurons. Genes Dev, 2006, 20(20): 2806–2819. [169] Jiang L, Crews ST. Transcriptional specificity of Droso-phila dysfusion and the control of tracheal fusion cell gene expression. J Biol Chem, 2007, 282(39): 28659–28668. [170] Huang X, Powell-Coffman JA, Jin Y. The AHR-1 aryl hydrocarbon receptor and its co-factor the AHA-1 aryl hydrocarbon receptor nuclear translocator specify GABAergic neuron cell fate in C. elegans. Development, 2004, 131(4): 819–828. [171] Reisz-Porszasz S, Probst MR, Fukunaga BN, Hankinson O. Identification of functional domains of the aryl hy-drocarbon receptor nuclear translocator protein (ARNT). Mol Cell Biol, 1994, 14(9): 6075–6086. [172] Hirose K, Morita M, Ema M, Mimura J, Hamada H, Fujii H, Saijo Y, Gotoh O, Sogawa K, Fujii-Kuriyama Y. cDNA cloning and tissue-specific expression of a novel basic helix-loop-helix/PAS factor (Arnt2) with close sequence similarity to the aryl hydrocarbon receptor nuclear trans-locator (Arnt). Mol Cell Biol, 1996, 16(4): 1706–1713. [173] Sonnenfeld M, Ward M, Nystrom G, Mosher J, Stahl S, Crews S. The Drosophila tango gene encodes a bHLH-PAS protein that is orthologous to mammalian Arnt and controls CNS midline and tracheal development. Development, 1997, 124(22): 4571–4582. [174] Jiang H, Guo R, Powell-Coffman JA. The Caenorhabditis elegans hif-1 gene encodes a bHLH-PAS protein that is required for adaptation to hypoxia. Proc Natl Acad Sci USA, 2001, 98(14): 7916–7921. [175] Honma S, Ikeda M, Abe H, Tanahashi Y, Namihira M, Honma K, Nomura M. Circadian oscillation of BMAL1, a partner of a mammalian clock gene Clock, in rat su-prachiasmatic nucleus. Biochem Biophys Res Commun, 1998, 250(1): 83–87. [176] Ikeda M, Yu W, Hirai M, Ebisawa T, Honma S, Yoshimura K, Honma KI, Nomura M. cDNA cloning of a novel bHLH-PAS transcription factor superfamily gene, BMAL2: its mRNA expression, subcellular distribution, and chro-mosomal localization. Biochem Biophys Res Commun, 2000, 275(2): 493–502. [177] Rutila JE, Suri V, Le M, So WV, Rosbash M, Hall JC. CYCLE is a second bHLH-PAS clock protein essential for circadian rhythmicity and transcription of Drosophila pe-riod and timeless. Cell, 1998, 93(5): 805–814. [178] Gekakis N, Staknis D, Nguyen HB, Davis FC, Wilsbacher LD, King DP, Takahashi JS, Weitz CJ. Role of the CLOCK protein in the mammalian circadian mechanism. Science, 1998, 280(5369): 1564–1569. [179] Zhou YD, Barnard M, Tian H, Li X, Ring HZ, Francke U, Shelton J, Richardson J, Russell DW, McKnight SL. Mo-lecular characterization of two mammalian bHLH-PAS domain proteins selectively expressed in the central nervous system. Proc Natl Acad Sci USA, 1997, 94(2): 713–718. [180] Dardente H, Fortier EE, Martineau V, Cermakian N. Cryptochromes impair phosphorylation of transcriptional activators in the clock: a general mechanism for circadian repression. Biochem J, 2007, 402(3): 525–536. [181] Bae K, Lee C, Hardin PE, Edery I. dCLOCK is present in limiting amounts and likely mediates daily interactions between the dCLOCK-CYC transcription factor and the PER-TIM complex. J Neurosci, 2000, 20(5): 1746–1753. [182] Ashok M, Turner C, Wilson TG. Insect juvenile hormone resistance gene homology with the bHLH-PAS family of ranscriptional regulators. Proc Natl Acad Sci USA, 1998, 95(6): 2761–2766. [183] Godlewski J, Wang S, Wilson TG. Interaction of bHLH-PAS proteins involved in juvenile hormone recep-tion in Drosophila. Biochem Biophys Res Commun, 2006, 342(4): 1305–1311. [184] Thomas JB, Crews ST, Goodman CS. Molecular genetics of the single-minded locus: a gene involved in the devel-opment of the Drosophila nervous system. Cell, 1988, 52(1): 133–141. [185] Franks RG, Crews ST. Transcriptional activation domains of the single-minded bHLH protein are required for CNS midline cell development. Mech Dev, 1994, 45(3): 269–277. [186] Ema M, Morita M, Ikawa S, Tanaka M, Matsuda Y, Gotoh O, Saijoh Y, Fujii H, Hamada H, Kikuchi Y, Fujii-Kuriyama Y. Two new members of the murine Sim gene family are transcriptional repressors and show dif-ferent expression patterns during mouse embryogenesis. Mol Cell Biol, 1996, 16(10): 5865–5875. [187] Wilk R, Weizman I, Shilo BZ. Trachealess encodes a bHLH-PAS protein that is an inducer of tracheal cell fates in Drosophila. Genes Dev, 1996, 10(1): 93–102. [188] Brunskill EW, Ehrman LA, Williams MT, Klanke J, Hammer D, Schaefer TL, Sah R, Dorn GW 2nd, Potter SS, Vorhees CV. Abnormal neurodevelopment, neurosignaling and behaviour in Npas3-deficient mice. Eur J Neurosci, 2005, 22(6): 1265–1276. [189] Semenza GL, Wang GL. A nuclear factor induced by hy-poxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for tran-scriptional activation. Mol Cell Biol, 1992, 12(12): 5447–5454. [190] Wang GL, Jiang BH, Rue EA, Semenza GL. Hy-poxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA, 1995, 92(12): 5510–5514. [191] Hara S, Hamada J, Kobayashi C, Kondo Y, Imura N. Ex-pression and characterization of hypoxia-inducible factor (HIF)-3α in human kidney: suppression of HIF-mediated gene expression by HIF-3α. Biochem Biophys Res Commun, 2001, 287(4): 808–813. [192] Wiesener MS, Turley H, Allen WE, Willam C, Eckardt KU, Talks KL, Wood SM, Gatter KC, Harris AL, Pugh CW, Ratcliffe PJ, Maxwell PH. Induction of endothelial PAS domain protein-1 by hypoxia: characterization and comparison with hypoxia-inducible factor-1α. Blood, 1998, 92(7): 2260–2268. [193] Ohsawa S, Hamada S, Kakinuma Y, Yagi T, Miura M. Novel function of neuronal PAS domain protein 1 in erythropoietin expression in neuronal cells. J Neurosci Res, 2005, 79(4): 451–458. [194] Lavista-Llanos S, Centanin L, Irisarri M, Russo DM, Gleadle JM, Bocca SN, Muzzopappa M, Ratcliffe PJ, Wappner P. Control of the hypoxic response in Droso-phila melanogaster by the basic helix-loop-helix PAS protein similar. Mol Cell Biol, 2002, 22(19): 6842–6853. [195] Botas J, Moscoso del Prado J, Garcia-Bellido A. Gene- dose titration analysis in the search of trans-regulatory genes in Drosophila. Embo J, 1982, 1(3): 307–310. [196] Ellis HM. Embryonic expression and function of the Drosophila helix-loop-helix gene, extramacrochaetae. Mech Dev, 1994, 47(1): 65–72. [197] Yan W, Young AZ, Soares VC, Kelley R, Benezra R, Zhuang Y. High incidence of T-cell tumors in E2A-null mice and E2A/Id1 double-knockout mice. Mol Cell Biol, 1997, 17(12): 7317–7327. [198] Yokota Y, Mansouri A, Mori S, Sugawara S, Adachi S, Nishikawa S, Gruss P. Development of peripheral lym-phoid organs and natural killer cells depends on the he-lix-loop-helix inhibitor Id2. Nature, 1999, 397(6721): 702–706. [199] Jen Y, Manova K, Benezra R. Expression patterns of Id1, Id2, and Id3 are highly related but distinct from that of Id4 during mouse embryogenesis. Dev Dynam, 1996, 207(3): 235–252. [200] Dawson SR, Turner DL, Weintraub H, Parkhurst SM. Specificity for the hairy/enhancer of split basic he-lix-loop-helix (bHLH) proteins maps outside the bHLH domain and suggests two separable modes of transcriptional repression. Mol Cell Biol, 1995, 15(12): 6923–6931. [201] Ishibashi M, Moriyoshi K, Sasai Y, Shiota K, Nakanishi S, Kageyama R. Persistent expression of helix-loop-helix factor HES-1 prevents mammalian neural differentiation in the central nervous system. Embo J, 1994, 13(8): 1799–1805. [202] Ishibashi M, Sasai Y, Nakanishi S, Kageyama R. Mo-lecular characterization of HES-2, a mammalian he-lix-loop-helix factor structurally related to Drosophila hairy and Enhancer of split. Eur J Biochem, 1993, 215(3): 645–652. [203] Lobe CG. Expression of the helix-loop-helix factor, Hes3, during embryo development suggests a role in early mid-brain-hindbrain patterning. Mech Dev, 1997, 62(2): 227–237. [204] Takebayashi K, Akazawa C, Nakanishi S, Kageyama R. Structure and promoter analysis of the gene encoding the mouse helix-loop-helix factor HES-5. Identification of the neural precursor cell-specific promoter element. J Biol Chem, 1995, 270(3): 1342–1349. [205] Koyano-Nakagawa N, Kim J, Anderson D, Kintner C. Hes6 acts in a positive feedback loop with the neurogen-ins to promote neuronal differentiation. Development, 2000, 127(19): 4203–4216. [206] Bessho Y, Sakata R, Komatsu S, Shiota K, Yamada S, Kageyama R. Dynamic expression and essential functions of Hes7 in somite segmentation. Genes Dev, 2001, 15(20): 2642–2647. [207] Nakashima A, Kawamoto T, Honda KK, Ueshima T, Noshiro M, Iwata T, Fujimoto K, Kubo H, Honma S, Yo-rioka N, Kohno N, Kato Y. DEC1 modulates the circadian phase of clock gene expression. Mol Cell Biol, 2008, 28(12): 4080–4092. [208] Sato F, Bhawal UK, Kawamoto T, Fujimoto K, Imaizumi T, Imanaka T, Kondo J, Koyanagi S, Noshiro M, Yoshida H, Kusumi T, Kato Y, Kijima H. Basic-helix-loop-helix (bHLH) transcription factor DEC2 negatively regulates vascular endothelial growth factor expression. Genes Cells, 2008, 13(2): 131–144. [209] Rushlow CA, Hogan A, Pinchin SM, Howe KM, Lardelli M, Ish-Horowicz D. The Drosophila hairy protein acts in both segmentation and bristle patterning and shows ho-mology to N-myc. Embo J, 1989, 8(10): 3095–3103. [210] Wallace K, Liu TH, Vaessin H. The pan-neural bHLH proteins DEADPAN and ASENSE regulate mitotic activ-ity and CDK inhibitor dacapo expression in the Droso-phila larval optic lobes. Genesis, 2000, 26(1): 77–85. [211] Schrons H, Knust E, Campos-Ortega JA. The Enhancer of split complex and adjacent genes in the 96F region of Drosophila melanogaster are required for segregation of neural and epidermal progenitor cells. Genetics, 1992, 132(2): 481–503. [212] Klambt C, Knust E, Tietze K, Campos-Ortega JA. Closely related transcripts encoded by the neurogenic gene com-plex enhancer of split of Drosophila melanogaster. Embo J, 1989, 8(1): 203–210. [213] Alper S, Kenyon C. REF-1, a protein with two bHLH do-mains, alters the pattern of cell fusion in C. elegans by regu-lating Hox protein activity. Development, 2001, 128(10): 1793–1804. [214] Leimeister C, Externbrink A, Klamt B, Gessler M. Hey genes: a novel subfamily of hairy- and Enhancer of split related genes specifically expressed during mouse em-bryogenesis. Mech Dev, 1999, 85(1–2): 173–177. [215] Leimeister C, Schumacher N, Steidl C, Gessler M. Analysis of HeyL expression in wild-type and Notch pathway mutant mouse embryos. Mech Dev, 2000, 98(1-2): 175–178. [216] Miyoshi G, Bessho Y, Yamada S, Kageyama R. Identifica-tion of a novel basic helix-loop-helix gene, Heslike, and its role in GABAergic neurogenesis. J Neurosci, 2004, 24(14): 3672–3682. [217] Aravind L, Koonin EV. Gleaning non-trivial structural, functional and evolutionary information about proteins by iterative database searches. J Mol Biol, 1999, 287(5): 1023–1040. [218] Hagman J, Travis A, Grosschedl R. A novel line-age-specific nuclear factor regulates mb-1 gene transcrip-tion at the early stages of B cell differentiation. Embo J, 1991, 10(11): 3409–3417. [219] Kudrycki K, Stein-Izsak C, Behn C, Grillo M, Akeson R, Margolis FL. Olf-1-binding site: characterization of an olfactory neuron-specific promoter motif. Mol Cell Biol, 1993, 13(5): 3002–3014. [220] Crozatier M, Valle D, Dubois L, Ibnsouda S, Vincent A. Collier, a novel regulator of Drosophila head develop-ment, is expressed in a single mitotic domain. Curr Biol, 1996, 6(6): 707–718. [221] Wang SS, Tsai RY, Reed RR. The characterization of the Olf-1/EBF-like HLH transcription factor family: implica-tions in olfactory gene regulation and neuronal develop-ment. J Neurosci, 1997, 17(11): 4149–4158. [222] Wang SS, Betz AG, Reed RR. Cloning of a novel Olf-1/EBF-like gene, O/E-4, by degenerate oligo-based direct selection. Mol Cell Neurosci, 2002, 20(3): 404–414. [223] Maruyama O, Nishimori H, Katagiri T, Miki Y, Ueno A, Nakamura Y. Cloning of TCFL5 encoding a novel human basic helix-loop-helix motif protein that is specifically expressed in primary spermatocytes at the pachytene stage. Cytogenet Cell Genet, 1998, 82(1–2): 41–45. [224] Ballow D, Meistrich ML, Matzuk M, Rajkovic A. Sohlh1 is essential for spermatogonial differentiation. Dev Biol, 2006, 294(1): 161–167. [225] Ballow DJ, Xin Y, Choi Y, Pangas SA, Rajkovic A. Sohlh2 is a germ cell-specific bHLH transcription factor. Gene Expr Patterns, 2006, 6(8): 1014–1018. [226] Hurlin PJ, Steingrimsson E, Copeland NG, Jenkins NA, Eisenman RN. Mga, a dual-specificity transcription factor that interacts with Max and contains a T-domain DNA-binding motif. Embo J, 1999, 18(24): 7019–7028. [227] Gray PA, Fu H, Luo P, Zhao Q, Yu J, Ferrari A, Tenzen T, Yuk DI, Tsung EF, Cai Z, Alberta JA, Cheng LP, Liu Y, Stenman JM, Valerius MT, Billings N, Kim HA, Green-berg ME, McMahon AP, Rowitch DH, Stiles CD, Ma Q. Mouse brain organization revealed through direct ge-nome-scale TF expression analysis. Science, 2004, 306(5705): 2255–2257. |
[1] | 孙兆庆, 闫波. 转录因子GATA6在心血管疾病中的作用及其调控机制[J]. 遗传, 2019, 41(5): 375-383. |
[2] | 于好强,孙福艾,冯文奇,路风中,李晚忱,付凤玲. 转录因子BES1/BZR1调控植物生长发育及抗逆性[J]. 遗传, 2019, 41(3): 206-214. |
[3] | 鞠君毅,赵权. γ-珠蛋白基因表达调控机制与临床应用[J]. 遗传, 2018, 40(6): 429-444. |
[4] | 丁庆倩,王小婷,胡利琴,齐欣,葛林豪,徐伟亚,徐兆师,周永斌,贾冠清,刁现民,闵东红,马有志,陈明. 谷子MYB类转录因子SiMYB42提高转基因拟南芥低氮胁迫耐性[J]. 遗传, 2018, 40(4): 327-338. |
[5] | 任岚,肖茹丹,张倩,娄晓敏,张昭军,方向东. KLF1和KLF9对K562细胞红系分化的协同调控作用[J]. 遗传, 2018, 40(11): 998-1006. |
[6] | 张玲, 何建波. GATA6在肝脏发育中的作用及调控机制[J]. 遗传, 2018, 40(1): 22-32. |
[7] | 岳敏, 杨禹, 郭改丽, 秦曦明. 哺乳动物生物钟的遗传和表观遗传研究进展[J]. 遗传, 2017, 39(12): 1122-1137. |
[8] | 郭文雅,崔艳梅,王婷婷,喻德跃,黄方. 野生大豆花发育相关基因GsLFY的功能研究[J]. 遗传, 2017, 39(1): 56-65. |
[9] | 向小华, 吴新儒, 晁江涛, 杨明磊, 杨帆, 陈果, 刘贯山, 王元英. 普通烟草WRKY基因家族的鉴定及表达分析[J]. 遗传, 2016, 38(9): 840-856. |
[10] | 李晓旭, 刘成, 李伟, 张增林, 高晓明, 周慧, 郭永峰. 番茄WOX转录因子家族的鉴定及其进化、表达分析[J]. 遗传, 2016, 38(5): 444-460. |
[11] | 杨明磊, 晁江涛, 王大伟, 胡军华, 吴华, 龚达平, 刘贯山. 烟草C2H2锌指蛋白转录因子家族成员的鉴定与表达分析[J]. 遗传, 2016, 38(4): 337-349. |
[12] | 翟亚男, 许泉, 郭亚, 吴强. 原钙粘蛋白基因簇调控区域中成簇的CTCF结合位点分析[J]. 遗传, 2016, 38(4): 323-336. |
[13] | 谷彦冰, 冀志蕊, 迟福梅, 乔壮, 徐成楠, 张俊祥, 周宗山, 董庆龙. 桃WRKY基因家族全基因组鉴定和表达分析[J]. 遗传, 2016, 38(3): 254-270. |
[14] | 马建辉, 仝豆豆, 张文利, 张黛静, 邵云, 杨云, 姜丽娜. 乌拉尔图小麦NAC转录因子的筛选与分析[J]. 遗传, 2016, 38(3): 243-253. |
[15] | 李莉云,史佳楠,杨烁,孙财强,刘国振. 基于转录特征的水稻WRKY转录因子功能注释[J]. 遗传, 2016, 38(2): 126-136. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: