[1] Kornberg RD, Lorch Y. Twenty-five years of the nu-cleosome, fundamental particle of the eukaryote chromo-some. Cell, 1999, 98(3): 285−294.
[2] Kouzarides T. Chromatin modifications and their function. Cell, 2007, 128(4): 693−705.
[3] Shahbazian MD, Grunstein M. Functions of site-specific histone acetylation and deacetylation. Annu Rev Biochem, 2007, 76(2): 75−100.
[4] Marmorstein R, Trievel RC. Histone modifying enzymes: structures, mechanisms, and specificities. Biochim Biophys Acta, 2009, 1789(1): 58−68.
[5] Zhang Y. Transcriptional regulation by histone ubiquitination and deubiquitination. Genes Dev, 2003, 17(22): 2733−2740.
[6] Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA, Casero RA, Shi Y. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell, 2004, 119(7): 941−953.
[7] Chen Y, Yang Y, Wang F, Wan K, Yamane K, Zhang Y, Lei M. Crystal structure of human histone lysine-specific de-methylase 1 (LSD1). Proc Natl Acad Sci USA, 2006, 103(38): 13956−13961.
[8] Anand R, Marmorstein R. Structure and mechanism of ly-sine-specific demethylase enzymes. J Biol Chem, 2007, 282(49): 35425−35429.
[9] 阮建彬, 臧建业. 组蛋白去甲基化酶LSD1 的结构和功能研究进展. 中国科学技术大学学报, 2008, 38(8): 930−940.
[10] Lee MG, Wynder C, Bochar DA, Hakimi MA, Cooch N, Shiekhattar R. Functional interplay between histone de-methylase and deacetylase enzymes. Mol Cell Biol, 2006, 26(17): 6395−6402.
[11] Yang M, Gocke CB, Luo X, Borek D, Tomchick DR, Machius M, Otwinowski Z, Yu H. Structural basis for CoREST dependent demethylation of nucleosomes by the human LSD1 histone demethylase. Mol Cell, 2006, 23(3): 377−387.
[12] Lan F, Nottke AC, Shi Y. Mechanisms involved in the regulation of histone lysine demethylases. Curr Opin Cell Biol, 2008, 20(3): 316−325.
[13] Nottke A, Colaiacovo MP, Shi Y. Developmental roles of the histone lysine demethylases. Development, 2009, 136(6): 879−889.
[14] 高文龙, 刘红林. DOT1—— 一类新的组蛋白赖氨酸甲基转移酶. 遗传, 2007, 29(12): 1449−1454.
[15] Karytinos A, Forneris F, Profumo A, Ciossani G, Battaglioli E, Binda C, Mattevi A. A novel mammalian flavin-dependent histone demethylase. J Biol Chem, 2009, 284(26): 17775−17782.
[16] Rudolph T, Yonezawa M, Lein S, Heidrich K, Kubicek S, Schafer C, Phalke S, Walther M, Schmidt A, Jenuwein T, Reuter G. Heterochromatin formation in Drosophila is ini-tiated through active removal of H3K4 methylation by the LSD1 homolog SU(VAR)3-3. Mol Cell, 2007, 26(1): 103−115.
[17] Eimer S, Lakowski B, Donhauser R, Baumeister R. Loss of spr-5 bypasses the requirement for the C. elegans pre-senilin sel-12 by derepressing hop-1. EMBO J, 2002, 21(21): 5787−5796.
[18] Huang J, Sengupta R, Espejo AB, Lee MG, Dorsey JA, Richter M, Opravil S, Shiekhattar R, Bedford MT, Jenuwein T, Berger SL. p53 is regulated by the lysine de-methylase LSD1. Nature, 2007, 449(7158): 105−108.
[19] Nicholson TB, Chen T. LSD1 demethylates histone and non-histone proteins. Epigenetics, 2009, 4(3): 129−132.
[20] Jiang D, Yang W, He Y, Amasino RM. Arabidopsis rela-tives of the human lysine-specific Demethylase1 repress the expression of FWA and FLOWERING LOCUS C and thus promote the floral transition. Plant Cell, 2007, 19(10): 2975−2987.
[21] Wang L, Pei Z, Tian Y, He C. OsLSD1, a rice zinc finger protein, regulates programmed cell death and callus dif-ferentiation. Mol Plant Microbe Interact, 2005, 18(5): 375−384.
[22] Tsukada Y, Fang J, Erdjument-Bromage H, Warren ME, Borchers CH,Tempst P, Zhang Y. Histone demethylation by a family of JmjC domain-containing proteins. Nature, 2006, 439(7078): 811−816.
[23] Yamane K, Toumazou C, Tsukada Y, Erdjument-Bromage H, Tempst P, Wong J, Zhang Y. JHDM2A, a JmjC-con |