[1] de Rooij DG, Grootegoed JA. Spermatogonial stem cells. Curr Opin Cell Biol, 1998, 10(6): 694–701. [2] Bellvé AR, Cavicchia JC, Millette CF, O'Brien DA, Bhat-nagar YM, Dym M. Spermatogenic cells of the prepuberal mouse: Isolation and morphological characterization. J Cell Biol, 1977, 74(1): 68–85. [3] Maatouk DM, Loveland KL, McManus MT, Moore K, Harfe BD. Dicer1 is required for differentiation of the mouse male germline. Biol Reprod, 2008, 79(4): 696–703. [4] Hatfield SD, Shcherbata HR, Fischer KA, Nakahara K, Carthew RW, Ruohola-Baker H. Stem cell division is regulated by the microRNA pathway. Nature, 2005, 435(7044): 974–978. [5] Tolia NH, Joshua-Tor L. Slicer and the Argonautes. Nat Chem Biol, 2007, 3(1): 36–43. [6] Watanabe T, Takeda A, Tsukiyama T, Mise K, Okuno T, Sasaki H, Minami N, Imai H. Identi?cation and charac-terization of two novel classes of small RNAs in the mouse germline: retrotransposon-derived siRNAs in oo-cytes and germline small RNAs in testes. Genes Dev, 2006, 20(13): 1732–1743. [7] Gunawardane LS, Saito K, Nishida KM, Miyoshi K, Kawamura Y, Nagami T, Siomi H, Siomi MC. A sli-cer-mediated mechanism for repeat-associated siRNA 5? end formation in Drosophila. Science, 2007, 315(5818): 1587–1590. [8] Vagin VV, Sigova A, Li CJ, Seitz H, Gvozdev V, Zamore PD. A distinct small RNA pathway silences sel?sh genetic elements in the germline. Science, 2006, 313(5785): 320–324. [9] Brennecke J, Aravin AA, Stark A, Dus M, Kellis M, Sa-chidanandam R, Hannon GJ. Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell, 2007, 128(6): 1089–1103. [10] Lin HF. piRNAs in the germ line. Science, 2007, 316(5823): 397. [11] Plasterk RH. RNA silencing: the genome’s immune system. Science, 2002, 296(5571): 1263–1265. [12] Yi R, Qin Y, Macara IG, Cullen BR. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev, 2003, 17(24): 3011–3016. [13] Lund E, Guttinger S, Calado A, Dahlberg JE, Kutay U. Nuclear export of microRNA precursors. Science, 2004, 303(5654): 95–98. [14] Hutvágner G, McLachlan J, Pasquinelli AE, Bálint E, Tuschl T, Zamore PD. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science, 2001, 293(5531): 834–838. [15] Carmell MA, Hannon GJ. RNase III enzymes and the ini-tiation of gene silencing. Nat Struct Mol Biol, 2004, 11(3): 214–218. [16] Kim VN. MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol, 2005, 6(5): 376–385. [17] Lai EC. Micro RNAs are complementary to 3’ UTR se-quence motifs that mediate negative post-transcriptional regulation. Nat Genet, 2002, 30(4): 363–364. [18] Carrington JC, Ambros V. Role of microRNAs in plant and animal development. Science, 2003, 301(5631): 336–338. [19] Bartel DP, Chen CZ. Micromanagers of gene expression: the potentially widespread in?uence of metazoan mi-croRNAs. Nat Rev Genet, 2004, 5(5): 396–400. [20] Mathonnet G, Fabian MR, Svitkin YV, Parsyan A, Huck L, Murata T, Biffo S, Merrick WC, Darzynkiewicz E, Pillai RS, Filipowicz W, Duchaine TF, Sonenberg N. MicroRNA inhibition of translation initiation in vitro by targeting the cap-binding complex eIF4F. Science, 2007, 317(5845): 1764–1767. [21] He ZP, Kokkinaki M, Pant D, Gallicano GI, Dym M. Small RNA molecules in the regulation of spermatogene-sis. Reproduction, 2009, 137(6): 901–911. [22] Aravin A, Gaidatzis D, Pfeffer S, Lagos-Quintana M, Landgraf P, Iovino N, Morris P, Brownstein MJ, Kuramo-chi-Miyagawa S, Nakano T, Chien M, Russo JJ, Ju JY, Sheridan R, Sander C, Zavolan M, Tuschl T. A novel class of small RNAs bind to MILI protein in mouse testes. Nature, 2006, 442(7099): 203–207. [23] Girard A, Sachidanandam R, Hannon GJ, Carmell MA. A germline-speci?c class of small RNAs binds mammalian Piwi proteins. Nature, 2006, 442(7099): 199–202. [24] Grivna ST, Beyret E, Wang Z, Lin HF. A novel class of small RNAs in mouse spermatogenic cells. Genes Dev, 2006, 20(13): 1709–1714. [25] Lau NC, Seto AG, Kim J, Kuramochi-Miyagawa S, Na-kano T, Bartel DP, Kingston RE. Characterization of the piRNA complex from rat testes. Science, 2006, 313(5785): 363–367. [26] Aravin AA, Sachidanandam R, Girard A, Fejes-Toth K, Hannon GJ. Developmentally regulated piRNA clusters implicate MILI in transposon control. Science, 2007, 316(5825): 744–747. [27] Carmell MA, Girard A, van de Kant HJ, Bourc’his D, Be-stor TH, de Rooij DG, Hannon GJ. MIWI2 is essential for spermatogenesis and repression of transposons in the mouse male germline. Dev Cell, 2007, 12(4): 503–514. [28] Hayashi K, Chuva de Sousa Lopes SM, Kaneda M, Tang FC, Hajkova P, Lao KQ, O'Carroll D, Das PP, Ta-rakhovsky A, Miska EA, Surani MA. MicroRNA biogene-sis is required for mouse primordial germ cell develop-ment and spermatogenesis. PLoS One, 2008, 3(3): e1738. [29] Bonetta L. The inside scoop-evaluating gene delivery methods. Nat Methods, 2005, 2(11): 875–883. [30] He ZP, Jiang JJ, Hofmann MC, Dym M. Gfra1 silencing in mouse spermatogonial stem cells results in their differen-tiation via the inactivation of RET tyrosine kinase. Biol Reprod, 2007, 77(4): 723–733. [31] Braydich-Stolle L, Kostereva N, Dym M, Hofmann MC. Role of Src family kinases and N-Myc in spermatogonial stem cell proliferation. Dev Biol, 2007, 304(1): 34–45. [32] Oatley JM, Avarbock MR, Telaranta AI, Fearon DT, Brin-ster RL. Identifying genes important for spermatogonial stem cell self-renewal and survival. Proc Natl Acad Sci USA, 2006, 103(25): 9524–9529. [33] Oatley JM, Avarbock MR, Brinster RL. Glial cell line-derived neurotrophic factor regulation of genes es-sential for self-renewal of mouse spermatogonial stem cells is dependent on Src family kinase signaling. J Biol Chem, 2007, 282(35): 25842–25851. [34] Wong EW, Mruk DD, Lee WM, Cheng CY. Par3/Par6 po-larity complex coordinates apical ectoplasmic specializa-tion and blood–testis barrier restructuring during sper-matogenesis. Proc Natl Acad Sci USA, 2008, 105(28): 9657–9662. [35] Yan HH, Mruk DD, Wong EW, Lee WM, Cheng CY. An autocrine axis in the testis that coordinates spermiation and blood–testis barrier restructuring during spermato-genesis. Proc Natl Acad Sci USA, 2008, 105(26): 8950–8955. [36] Gonzalez-Herrera IG, Prado-Lourenco L, Pileur F, Conte C, Morin A, Cabon F, Prats H, Vagner S, Bayard F, Audigier S, Prats AC. Testosterone regulates FGF-2 expression during testis maturation by an IRES-dependent transla-tional mechanism. FASEB J, 2006, 20(3): 476–478. [37] Elbashir SM, Harborth J, Weber K, Tuschl T. Analysis of gene function in somatic mammalian cells using small in-terfering RNAs. Methods, 2002, 26(2): 199–213. [38] Heidel JD, Hu SW, Liu XF, Triche TJ, Davis ME. Lack of interferon response in animals to naked siRNAs. Nat Biotechnol, 2004, 22(12): 1579–1582. [39] Yu ZR, Raabe T, Hecht NB. MicroRNA Mirn122a reduces expression of the posttranscriptionally regulated germ cell transition protein 2 (Tnp2) messenger RNA (mRNA) by mRNA cleavage. Biol Reprod, 2005, 73(3): 427–433. [40] Ro S, Park C, Sanders KM, McCarrey JR, Yan W. Cloning and expression pro?ling of testis-expressed microRNAs. Dev Biol, 2007, 311(2): 592–602. [41] Ostermeier GC, Goodrich RJ, Moldenhauer JS, Diamond MP, Krawetz SA. A suite of novel human spermatozoal RNAs. J Androl, 2005, 26(1): 70–74. [42] Yan NH, Lu YL, Sun HQ, Tao DC, Zhang SZ, Liu WY, Ma YX. A microarray for microRNA profiling in mouse testis tissues. Reproduction, 2007, 134(1): 73–79. [43] Yu ZR, Hecht NB. The DNA/RNA-binding protein, translin, binds microRNA122a and increases its in vivo stability. J Androl, 2008, 29(5): 572–579. [44] Barad O, Meiri E, Avniel A, Aharonov R, Barzilai A, Bentwich I, Einav U, Gilad S, Hurban P, Karov Y, Loben-hofer EK, Sharon E, Shiboleth YM, Shtutman M, Bentwich Z, Einat P. MicroRNA expression detected by oligonucleotide microarrays: system establishment and expression pro?ling in human tissues. Genome Res, 2004, 14(12): 2486–2494. [45] Novotny GW, Sonne SB, Nielsen JE, Jonstrup SP, Hansen MA, Skakkebaek NE, Rajpert-De Meyts E, Kjems J, Lef-fers H. Translational repression of E2F1 mRNA in carci-noma in situ and normal testis correlates with expression of the miR-17-92 cluster. Cell Death Differ, 2007, 14(4): 879–882. [46] Marcon E, Babak T, Chua G, Hughes T, Moens PB. miRNA and piRNA localization in the male mammalian meiotic nucleus. Chromosome Res, 2008, 16(2): 243–260. [47] Song R, Ro S, Michaels JD, Park C, McCarrey JR, Yan W. Many X-linked microRNAs escape meiotic sex chromo-some inactivation. Nat Genet, 2009, 41(4): 488–493. [48] Papaioannou MD, Pitetti JL, Ro S, Park C, Aubry F, Schaad O, Vejnar CE, Kuhne F, Descombes P, Zdobnov EM, McManus MT, Guillou F, Harfe BD, Yan W, Jégou B, Nef S. Sertoli cell Dicer is essential for spermatogene-sis in mice. Dev Biol, 2009, 326(1): 250–259. [49] Cox DN, Chao A, Baker J, Chang L, Qiao D, Lin HF. A novel class of evolutionarily conserved genes de?ned by piwi are essential for stem cell self-renewal. Genes Dev, 1998, 12(23): 3715–3727. [50] Reddien PW, Oviedo NJ, Jennings JR, Jenkin JC, Sánchez Alvarado A. SMEDWI-2 is a PIWI-like protein that regu-lates planarian stem cells. Science, 2005, 310(5752): 1327–1330. [51] Klattenhoff C, Theurkauf W. Biogenesis and germline functions of piRNAs. Development, 2008, 135(1): 3–9. [52] Deng W, Lin HF. miwi, a murine homolog of piwi, encodes a cytoplasmic protein essential for spermatogenesis. Dev Cell, 2002, 2(6): 819–830. [53] Kuramochi-Miyagawa S, Kimura T, Ijiri TW, Isobe T, Asada N, Fujita Y, Ikawa M, Iwai N, Okabe M, Deng W, Lin HF, Matsuda Y, Nakano T. Mili, a mammalian member of piwi family gene, is essential for spermatogenesis. De-velopment, 2004, 131(4): 839–849. [54] Grivna ST, Pyhtila B, Lin HF. MIWI associates with translational machinery and PIWI-interacting RNAs (piRNAs) in regulating spermatogenesis. Proc Natl Acad Sci USA, 2006, 103(36): 13415–13420. [55] Iguchi N, Xu MG, Hori T, Hecht NB. Noncoding RNAs of the mammalian testis: the meiotic transcripts Nct1 and Nct2 encode piRNAs. Ann N Y Acad Sci, 2007, 1120: 84–94. [56] Xu MG, You Y, Hunsicker P, Hori T, Small C, Griswold MD, Hecht NB. Mice de?cient for a small cluster of Piwi-interacting RNAs implicate Piwi-interacting RNAs in transposon control. Biol Reprod, 2008, 79(1): 51–57. [57] Shoji M, Chuma S, Yoshida K, Morita T, Nakatsuji N. RNA interference during spermatogenesis in mice. Dev Biol, 2005, 282(2): 524–534. [58] He ZP, Chan WY, Dym M. Microarray technology offers a novel tool for the diagnosis and identification of therapeu-tic targets for male infertility. Reproduction, 2006, 132(1): 11–19. [59] Krützfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, Stoffel M. Silencing of microRNAs in vivo with ‘antagomirs’. Nature, 2005, 438(7068): 685–689. [60] Krützfeldt J, Kuwajima S, Braich R, Rajeev KG, Pena J, Tuschl T, Manoharan M, Stoffel M. Speci?city, duplex degradation and subcellular localization of antagomirs. Nucleic Acids Res, 2007, 35(9): 2885–2892. [61] Otsuka M, Zheng M, Hayashi M, Lee JD, Yoshino O, Lin SC, Han JH. Impaired microRNA processing causes cor-pus luteum insuf?ciency and infertility in mice. J Clin Invest, 2008, 118(5): 1944–1954. [62] Voorhoeve PM, le Sage C, Schrier M, Gillis AJ, Stoop H, Nagel R, Liu YP, van Duijse J, Drost J, Griekspoor A, Zlotorynski E, Yabuta N, De Vita G, Nojima H, Looijenga LH, Agami R. A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell, 2006, 124(6): 1169-1181. [63] Gillis AJ, Stoop HJ, Hersmus R, Oosterhuis JW, Sun Y, Chen C, Guenther S, Sherlock J, Veltman I, Baeten J, van der Spek PJ, de Alarcon P, Looijenga LH. High-throughput microRNAome analysis in human germ cell tumours. J Pathol, 2007, 213(3): 319–328. [64] Youngren KK, Coveney D, Peng XN, Bhattacharya C, Schmidt LS, Nickerson ML, Lamb BT, Deng JM, Behringer RR, Capel B, Rubin EM, Nadeau JH, Matin A. The Ter mutation in the dead end gene causes germ cell loss and testicular germ cell tumours. Nature, 2005, 435(7040): 360–364. [65] Bhattacharya C, Aggarwal S, Kumar M, Ali A, Matin A. Mouse apolipoprotein B editing complex 3 (APOBEC3) is expressed in germ cells and interacts with dead-end (DND1). PLoS One, 2008, 3(5): e2315. |