[1] S trahl BD, Allis CD. The language of covalent histone modifications. Nature, 2000, 403(6765): 41-45.[2] Claussen U. Chromosomics. Cytogenet Genome Res, 2005, 111(2): 101-106.[3] Higgs DR, Vernimmen D, Hughes J, Gibbons R. Using genomics to study how chromatin influences gene expression. Annu Rev Genomics Hum Genet, 2007, 8: 299-325.[4] Li QL, Peterson KR, Fang XD, Stamatoyannopoulos G. Locus control regions. Blood, 2002, 100(9): 3077-3086.[5] Cockerill PN. Structure and function of active chromatin and DNase I hypersensitive sites. FEBS J, 2011, 278(13): 2182-2210.[6] Wang L, Di LJ, Lv X, Zheng W, Xue Z, Guo ZC, Liu DP, Liang CC. Inter-mar association contributes to transcriptionally active looping events in human β-globin gene cluster. PLoS One, 2009, 4(2): e4629.[7] Liu JW, Tabe LM. The influences of two plant nuclear matrix attachment regions (mars) on gene expression in transgenic plants. Plant Cell Physiol, 1998, 39(1): 115-123.[8] Arya G, Maitra A, Grigoryev SA. A structural perspective on the where, how, why, and what of nucleosome positioning. J Biomol Struct Dyn, 2010, 27(6): 803-820.[9] Jiang CZ, Pugh BF. Nucleosome positioning and gene regulation: Advances through genomics. Nat Rev Genet, 2009, 10(3): 161-172.[10] Lomvardas S, Thanos D. Modifying gene expression programs by altering core promoter chromatin architecture. Cell, 2002, 110(2): 261-271.[11] Zhao XY, Pendergrast PS, Hernandez N. A positioned nucleosome on the human U6 promoter allows recruitment of SNAPc by the Oct-1 POU domain. Mol Cell, 2001, 7(3): 539-549.[12] Boyes J, Omichinski J, Clark D, Pikaart M, Felsenfeld G. Perturbation of nucleosome structure by the erythroid transcription factor GATA-1. J Mol Biol, 1998, 279(3): 529-544.[13] Ng KW, Ridgway P, Cohen DR, Tremethick DJ. The binding of a fos/jun heterodimer can completely disrupt the structure of a nucleosome. EMBO J, 1997, 16(8): 2072-2085.[14] Li B, Carey M, Workman JL. The role of chromatin during transcription. Cell, 2007, 128(4): 707-719.[15] Barth TK, Imhof A. Fast signals and slow marks: The dynamics of histone modifications. Trends Biochem Sci, 2010, 35(11): 618-626.[16] Guenther MG, Levine SS, Boyer LA, Jaenisch R, Young RA. A chromatin landmark and transcription initiation at most promoters in human cells. Cell, 2007, 130(1): 77-88.[17] Kouzarides T. Chromatin modifications and their function. Cell, 2007, 128(4): 693-705.[18] Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res, 2011, 21(3): 381-395.[19] Kiefer CM, Hou C, Little JA, Dean A. Epigenetics of beta-globin gene regulation. Mutat Res, 2008, 647(1-2): 68-76.[20] Choy JS, Wei SJ, Lee JY, Tan S, Chu S, Lee TH. DNA methylation increases nucleosome compaction and rigidity. J Am Chem Soc, 2010, 132(6): 1782-1783.[21] Ørom UA, Derrien T, Beringer M, Gumireddy K, Gardini A, Bussotti G, Lai F, Zytnicki M, Notredame C, Huang QH, Guigo R, Shiekhattar R. Long noncoding rnas with enhancer-like function in human cells. Cell, 2010, 143(1): 46-58.[22] Qureshi IA, Mehler MF. Non-coding rna networks underlying cognitive disorders across the lifespan. Trends Mol Med, 2011, 17(6): 337-346.[23] Khalil AM, Guttman M, Huarte M, Garber M, Raj A, Morales DR, Thomas K, Presser A, Bernstein BE, van Oudenaarden A, Regev A, Lander ES, Rinn JL. Many human large intergenic noncoding rnas associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci USA, 2009, 106(28): 11667-11672.[24] Wang KC, Yang YW, Liu B, Sanyal A, Corces-Zimmerman R, Chen Y, Lajoie BR, Protacio A, Flynn RA, Gupta RA, Wysocka J, Lei M, Dekker J, Helms JA, Chang HY. A long noncoding rna maintains active chromatin to coordinate homeotic gene expression. Nature, 2011, 472(7341): 120-124.[25] Tsai MC, Manor O, Wan Y, Mosammaparast N, Wang JK, Lan F, Shi Y, Segal E, Chang HY. Long noncoding rna as modular scaffold of histone modification complexes. Science, 2010, 329(5992): 689-693.[26] Kohler C, Aichinger E. Antagonizing polycomb group-mediated gene repression by chromatin remodelers. Epigenetics, 2010, 5(1): 20-23.[27] Dean A. In the loop: Long range chromatin interactions and gene regulation. Brief Funct Genomics, 2011, 10(1): 3-10.[28] Tolhuis B, Blom M, Kerkhoven RM, Pagie L, Teunissen H, Nieuwland M, Simonis M, de Laat W, van Lohuizen M, van Steensel B. Interactions among polycomb domains are guided by chromosome architecture. PLoS Genet, 2011, 7(3): e1001343.[29] Hatta M, Cirillo LA. Chromatin opening and stable perturbation of core histone: DNA contacts by foxo1. J Biol Chem, 2007, 282(49): 35583-35593.[30] Li QL, Barkess G, Qian H. Chromatin looping and the probability of transcription. Trends Genet, 2006, 22(4): 197-202.[31] Duan ZJ, Andronescu M, Schutz K, McIlwain S, Kim YJ, Lee C, Shendure J, Fields S, Blau CA, Noble WS. A three-dimensional model of the yeast genome. Nature, 2010, 465(7296): 363-367.[32] Fraser P, Bickmore W. Nuclear organization of the genome and the potential for gene regulation. Nature, 2007, 447(7143): 413-417.[33] Göndör A, Ohlsson R. Chromosome crosstalk in three dimensions. Nature, 2009, 461(7261): 212-217.[34] Cremer T, Cremer C. Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet, 2001, 2(4): 292-301.[35] Lee HY, Johnson KD, Boyer ME, Bresnick EH. Relocalizing genetic loci into specific subnuclear neighborhoods. J Biol Chem, 2011, 286(21): 18834-18844.[36] Schoenfelder S, Sexton T, Chakalova L, Cope NF, Horton A, Andrews S, Kurukuti S, Mitchell JA, Umlauf D, Dimitrova DS, Eskiw CH, Luo YQ, Wei CL, Ruan YJ, Bieker JJ, Fraser P. Preferential associations between co-regulated genes reveal a transcriptional interactome in erythroid cells. Nat Genet, 2010, 42(1): 53-61.[37] Mateos-Langerak J, Bohn M, de Leeuw W, Giromus O, Manders EMM, Verschure PJ, Indemans MHG, Gierman HJ, Heermann DW, van Driel R, Goetze S. Spatially confined folding of chromatin in the interphase nucleus. Proc Natl Acad Sci USA, 2009, 106(10): 3812-3817.[38] Grosberg A, Rabin Y, Havlin S, Neer A. Crumpled globule model of the three-dimensional structure of DNA. Europhys Lett, 1993, 23(5): 373-378.[39] Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO, Sandstrom R, Bernstein B, Bender MA, Groudine M, Gnirke A, Stamatoyannopoulos J, Mirny LA, Lander ES, Dekker J. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science, 2009, 326(5950): 289-293.[40] Geyer PK, Vitalini MW, Wallrath LL. Nuclear organization: Taking a position on gene expression. Curr Opin Cell Biol, 2011, 23(3): 354-359.[41] Fang XD, Xiang P, Yin WX, Stamatoyannopoulos G, Li QL. Cooperativeness of the higher chromatin structure of the β-globin locus revealed by the deletion mutations of DNase I hypersensitive site 3 of the LCR. J Mol Biol, 2007, 365(1): 31-37.[42] Fang XD, Yin WX, Xiang P, Han HM, Stamatoyannopoulos G, Li QL. The higher structure of chromatin in the lcr of the β-globin locus changes during development. J Mol Biol, 2009, 394(2): 197-208.[43] Hou CH, Dale R, Dean A. Cell type specificity of chromatin organization mediated by ctcf and cohesin. Proc Natl Acad Sci USA, 2010, 107(8): 3651-3656. |