[1] 龙彭年. 杂交水稻走向世界的现状与发展对策. 中国稻米, 2004, 11(5): 6-8.[2] Wang YH, Li JY. Branching in rice. Curr Opin Plant Biol, 2010, 14: 1-6.[3] Fitzgerald MA, McCouch SR, Hall RD. Not just a grain of rice: the quest for quality. Trends Plant Sci, 2009, 14(3): 133-139.[4] 吴绍洪, 李荣生. 中国耕地与未来30年食物需求、保障及对策. 地理科学进展, 2002, 21(2): 121-129.[5] 赵明, 李建国, 张宾, 董志强, 王美云. 论作物高产挖潜的补偿机制. 作物学报, 2006, 32(10): 1566-1573.[6] 程式华, 曹立勇, 庄杰云, 吴伟明. 关于超级稻品种培育的资源和基因利用问题. 中国水稻科学, 2009, 23(3): 223-228.[7] 陈温福, 徐正进, 张文忠, 张龙步, 杨守仁. 水稻新株型创造与超高产育种. 作物学报, 2001, 27(5): 665-672.[8] 熊振民, 孔繁林. 水稻大穗大粒型育种的研究. 江苏农业科学, 1981, (4): 25-30.[9] 徐正进, 陈温福, 马殿荣, 吕英娜, 周淑清, 刘丽霞. 稻谷粒形与稻米主要品质性状的关系. 作物学报, 2004, 30(9): 894-900.[10] 莫惠栋. 谷类作物胚乳品质性状的遗传研究. 中国农业科学, 1995, 28(2): 1-7.[11] 徐建龙, 薛庆中, 罗利军, 黎志康. 水稻粒重及其相关性状的遗传解析. 中国水稻科学, 2002, 16(1): 6-10.[12] 姚国新, 卢磊. 水稻粒重基因定位克隆研究. 安徽农业科学, 2007, 35(27): 8468, 8478.[13] 莫惠栋. 我国稻米品质的改良. 中国农业科学, 1993, 26(4): 8-14.[14] 刘明伟, 刘勇, 王世全, 邓其明, 李平. 水稻显性小粒基因Mi3(t)的遗传定位. 中国水稻科学, 2005, 19(6): 511-515.[15] Weng JF, Gu SH, Wan XY, Gao H, Guo T, Su N, Lei CL, Zhang X, Cheng ZJ, Guo XP, Wang JL, Jiang L, Zhai HQ, Wan JM. Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. Cell Res, 2008, 18(12): 1199-1209.[16] Shomura A, Izawa T, Ebana K., Ebitani T, Kanegae H, Kon-ishi S, Yano M. Deletion in a gene associated with grain size increased yields during rice domestication. Nat Genet, 2008, 40(8): 1023-1028.[17] 郭益全, 劉清. 大粒水稻之遺傳研究Ⅱ.穀粒性狀之遺傳.中華農業研究, 1986, 35(4): 401-412.[18] 杨联松, 白一松, 陈多璞, 杨剑波, 丁超尘. 粳稻粒形遗传初步研究. 杂交水稻, 2002, 17(6): 46-48.[19] 熊振民, 孔繁林. 水稻粒重的超亲遗传及其在育种中的应用. 浙江农业大学学报(农业与生命科学版), 1982, 8(1): 17-25.[20] 石春海, 申宗坦. 早籼粒形的遗传和改良. 中国水稻科学, 1995, 9(1): 27-32.[21] 石春海, 申宗坦. 籼稻粒形及产量性状的加性相关和显性相关分析. 作物学报, 1996, 22(1): 36-42.[22] 祈祖白, 李宝健, 杨文广, 吴秀峰. 水稻籽粒外观品质及脂肪的遗传研究. 遗传学报, 1983, 10(6): 452-458.[23] 易小平, 陈芳远. 籼型杂交水稻品质性状的细胞质遗传效应研究. I. 稻米外观品质及氨基酸含量分析. 广西农学院学报, 1991, 10(1): 25-32.[24] 符福鸿, 王丰, 黄文剑, 彭惠普, 伍应运, 黄德娟. 杂交水稻谷粒性状的遗传分析. 作物学报, 1994, 20(1): 39-45.[25] 石春海, 何慈信, 朱军, 陈建国. 籼稻稻米外观品质性状的遗传主效应和环境互作效应分析. 中国水稻科学, 1999, 13(3): 179-182.[26] Zhu J. Analysis of conditional genetic effects and variance components in development genetics. Genetics, 1995, 141(4): 1633-1639.[27] 石春海, 吴建国, 蒋淑丽. 籼稻稻米粒长和粒宽性状的发育遗传研究. 中国作物学会水稻产业分会成立大会暨首届中国稻米论坛, 2003: 96-99.[28] 石春海, 吴平, 吴建国, 朱军, 樊龙江. 籼稻精米重量性状的发育遗传分析. 浙江大学学报(农业与生命科学版), 2001, 27(5): 483-488.[29] Yano M, Sasaki T. Genetic and molecular dissection of quan-titative traits in rice. Plant Mol Biol, 1997, 35(1-2): 145-153.[30] 庄杰云, 郑康乐. 水稻产量性状遗传机理及分子标记辅助高产育种. 生物技术通报, 1998, (1): 1-9.[31] 严长杰, 顾铭洪. 高代回交QTL分析与水稻育种. 遗传, 2000, 22(6): 419-422.[32] 姜树坤, 徐正进, 陈温福. 水稻QTL图位克隆的特征分析. 遗传, 2008, 30(9): 1121-1126.[33] Paterson AH, Lander ES, Hewitt JD, Peterson S, Lincoln SE, Tanksley SD. Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction frag-ment length polymorphisms. Nature, 1988, 335(6192): 721-726.[34] 毛传澡, 程式华. 水稻农艺性状QTL定位精确性及其影响因素的分析. 农业生物技术学报, 1999, 7(4): 386-394.[35] Xing Z, Tan F, Hua P, Sun L, Xu G, Zhang Q. Characteriza-tion of the main effects, epistatic effects and their environ-mental interactions of QTLs on the genetic basis of yield traits in rice. Theor Appl Genet, 2002, 105(2-3): 248-257.[36] Tan YF, Li JX, Yu SB, Xing YZ, Xu CG, Zhang QF. The three important traits for cooking and eating quality of rice grains are controlled by a single locus in an elite rice hybrid, Shan-you 63. Theor Appl Genet, 1999, 99(3-4): 642-648.[37] Tsunematsu H, Yoshimura A, Harushima Y, Nagamura Y, Kurata N, Yano M, Sasaki T, Iwata N. RFLP framework map using recombinant inbred lines in rice. Breed Sci, 1996, 46(3): 279-284.[38] Li JM, Xiao JH, Grandillo S, Jiang LY, Wan YZ, Deng QY, Yuan LP, McCouch SR. QTL detection for rice grain quality traits using an interspecific backcross population derived from cultivated Asian (O. sativa L.) and African (O. glaberrima S.) rice. Genome, 2004, 47(4): 697-704.[39] Yoshida S, Ikegami M, Kuze J, Sawada K, Hashimoto Z, Ishii T, Nakamura C, Kamijima O. QTL analysis for plant and grain characters of sake-brewing rice using a doubled haploid population. Breed Sci, 2002, 52(4): 309-317.[40] Aluko G, Martinez C, Tohme J, Castano C, Bergman C, Oard JH. QTL mapping of grain quality traits from the interspecific cross Oryza sativa × O. glaberrima. Theor Appl Genet, 2004, 109(3): 630-639.[41] Ramalingam J, Vera Cruz CM, Kukreja K, Chittoor JM, Wu JL, Lee SW, Baraoidan M, George ML, Cohen MB, Hulbert SH, Leach JE, Leung H. Candidate defense genes from rice, barley, and maize and their association with qualitative and quantitative resistance in rice. Mol Plant-Microbe Inter-act, 2003, 16(1): 14-24.[42] Redoña ED, Mackill DJ. Quantitative trait locus analysis for rice panicle and grain characteristics. Theor Appl Genet, 1998, 96(6-7): 957-963.[43] Cai HW, Morishima H. QTL clusters reflect character asso-ciations in wild and cultivated rice. Theor Appl Genet, 2002, 104(8): 1217-1228.[44] Fan CC, Xing YZ, Mao HL , Lu TT, Han B, Xu CG, Li XH, Zhang QF. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet, 2006, 112(6): 1164-1171.[45] 陈志军, 汤在祥, 宋雯, 徐辰武. 基于遗传位置的水稻与玉米重要农艺性状QTL比较研究. 中国水稻科学, 2009, 23(3): 229-236.[46] Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchison D, Martin C, Katagiri F, Lange BM, Moughamer T, Xia Y, Budworth P, Zhong J, Miguel T, Paszkowski U, Zhang S, Colbert M, Sun WL, Chen L, Cooper B, Park S, Wood TC, Mao L, Quail P, Wing R, Dean R, Yu Y, Zharkikh A, Shen R, Sahasrabudhe S, Thomas A, Cannings R, Gutin A, Pruss D, Reid J, Tav-tigian S, Mitchell J, Eldredge G, Scholl T, Miller RM, Bhatnagar S, Adey N, Rubano T, Tusneem N, Robinson R, Feldhaus J, Macalma T, Oliphant A, Briggs S. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science, 2002, 296(5565): 92-100.[47] Song XJ, Huang W, Shi M, Zhu MZ, Lin HX. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet, 2007, 39(5): 623-630.[48] Wang E, Wang J, Zhu X, Hao W, Wang L, Li Q, Zhang L, He W, Lu B, Lin H, Ma H, Zhang G, He Z. Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nat Genet, 2008, 40(11): 1370-1374.[49] Xue WY, Xing YZ, Weng XY, Zhao Y, Tang WJ, Wang L, Zhou HJ, Yu SB, Xu CG, Li XH, Zhang QF. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet, 2008, 40(6): 761-767.[50] Ashikari M, Sakakibara H, Lin SY, Yamamoto T, Takashi T, Nishimura A, Angeles ER, Qian Q, Kitano H, Matsuoka M. Cytokinin oxidase regulates rice grain production. Science, 2005, 309(5735): 741-745.[51] Huang XZ, Qian Q, Liu ZB, Sun HY, He SY, Luo D, Xia GM, Chu CC, Li JY, Fu XD. Natural variation at the DEP1 locus enhances grain yield in rice. Nat Genet, 2009, 41(4): 494-497.[52] Jiao YQ, Wang YH, Xue DW , Wang J, Yan MX, Liu GF, Dong GJ, Zeng DL, Lu ZF, Zhu XD, Qian Q, Li JY. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat Genet, 2010, 42(6): 541-544.[53] Miura K, Ikeda M, Matsubara A, Song XJ, Ito M, Asano K, Matsuoka M, Kitano H, Ashikari M. OsSPL14 pro-motes panicle branching and higher grain productivity in rice. Nat Genet, 2010, 42(6): 545-549.[54] Tan YF, Xing YZ, Li JX, Yu SB, Xu CG, Zhang QF. Genetic bases of appearance quality of rice grains in Shanyou 63, an elite rice hybrid. Theor Appl Genet, 2000, 101(5-6): 823-829.[55] Takano-Kai N, Jiang H, Kubo T, Sweeney M, Matsumoto T, Kanamori H, Padhukasahasram B, Bustamante C, Yoshimura A, Doi K, McCouch S. Evolutionary history of GS3, a gene conferring grain length in rice. Genetics, 2009, 182(4): 1323-1334.[56] Itoh J, Nonomura K, Ikeda K, Yamaki S, Inukai Y, Yamagishi H, Kitano H, Nagato Y. Rice plant development: from zygote to spikelet. Pant Cell Physiol, 2005, 46(1): 23-47.[57] Van Vlijmen HWT, Gupta A, Narasimhan LS, Singh J. A novel database of disulfide patterns and its application to the discovery of distantly related homologs. J Mol Biol, 2004, 335(4): 1083-1092.[58] Zhang JL, Huang Y, Qiu LY, Nickel J, Sebald W. von Wille-brand factor type C domain-containing proteins regulate bone morphogenetic protein signaling through different recognition mechanisms. J Biol Chem, 2007, 282(27): 20002-20014.[59] Garcia Abreu J, Coffinier C, Larraín J, Oelgeschläger M, De Robertis EM. Chordin-like CR domains and the regulation of evolutionary conserved extracellular signaling systems. Gene, 2002, 287(1-2): 39-47.[60] O’Leary JM, Hamilton JM, Deane CM, Valeyev NV, Sandell LJ, Downing AK. Solution structure and dynamics of a pro-totypical Chordin-rich repeat (von Willebrand Factor type C module) from collagen IIA. J Biol Chem, 2004, 279(51): 53857-53866.[61] 邹江石, 吕川根. 水稻超高产育种的实践与思考. 作物学报, 2005, 31(2): 254-258.[62] 冯荣坤. 超高产水稻育种的研究进展. 湖南农业科学, 2006, (3): 19-22.[63] 程式华. 杂交水稻育种材料和方法研究的现状及发展趋势. 中国水稻科学, 2000, 14(3): 165-169.[64] Fan CC, Yu SB, Wang CG, Xing YZ. A causal C-A mutation in the second exon of GS3 highly associated with rice grain length and validated as a functional marker. Theor Appl Genet, 2009, 118(3): 465-472.[65] 李自超, 张洪亮, 曹永生, 裘宗恩, 魏兴华, 汤圣祥, 余萍, 王象坤. 中国地方稻种资源初级核心种质取样策略研究. 作物学报, 2003, 29(1): 20-24.[66] Ashikari M, Matsuoka M. Identification, isolation and pyra-miding of quantitative trait loci for rice breeding. Trends Plant Sci, 2006, 11(7): 344-350.[67] Ashikari M, Sasaki A, Ueguchi Tanaka M, Itoh H, Nishimura A, Datta S, Ishiyama K, Saito T, Kobayashi M, Khush GS, Kitano H, Matsuoka M. Loss of function of a rice gibberellin biosynthetic gene, GA20 oxidase (GA20ox-2), lead to the rice “Green Revolution”. Breed Sci, 2002, 52(2): 143-150. |