遗传 ›› 2016, Vol. 38 ›› Issue (11): 992-1003.doi: 10.16288/j.yczz.16-086
王楠, 赵士振, 吕孟华, 向凤宁, 李朔
收稿日期:
2016-03-14
出版日期:
2016-11-20
发布日期:
2016-08-23
通讯作者:
李朔,博士,讲师,研究方向:植物细胞工程与种质创新。E-mail: lishuo@sdu.edu.cn
作者简介:
王楠,博士研究生,研究方向:细胞生物学。E-mail: wangnan1991gogo@163.com
基金资助:
Nan Wang, Shizhen Zhao, Menghua Lv, Fengning Xiang, Shuo Li
Received:
2016-03-14
Online:
2016-11-20
Published:
2016-08-23
Supported by:
摘要: 大豆(Glycine max (L.) Merill)是重要的粮食作物和经济作物,盐胁迫能造成大豆产量的大幅度降低。本文综述了通过正向遗传学手段获得的大豆耐盐数量性状位点(Quantitative trait locus, QTL)以及通过反向遗传学方法获得的大豆耐盐功能基因方面的研究进展。目前,正向遗传学发掘基因主要有图位克隆(Map-based cloning)和全基因组关联分析(Genome-wide association study, GWAS)两种方案,其中通过图位克隆在大豆中已经获得了6个耐盐QTL位点并且定位了1个重要的耐盐基因;利用GWAS在大豆中获得了1个耐盐功能基因。利用反向遗传学在大豆中获得了大量的耐盐相关功能基因并在模式植物中验证了其功能,主要包括离子转运蛋白基因和转录因子基因。这些研究为揭示大豆耐盐分子机制以及通过分子标记辅助育种或转基因技术创制耐盐大豆奠定了基础。
王楠, 赵士振, 吕孟华, 向凤宁, 李朔. 大豆耐盐相关QTLs鉴定和功能基因研究进展[J]. 遗传, 2016, 38(11): 992-1003.
Nan Wang, Shizhen Zhao, Menghua Lv, Fengning Xiang, Shuo Li. Research progress on identification of QTLs and functional genes involved in salt tolerance in soybean[J]. Hereditas(Beijing), 2016, 38(11): 992-1003.
[1] Parida AK, Das AB. Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf , 2005, 60(3): 324-349. [2] Banzai T, Hershkovits G, Katcoff DJ, Hanagata N, Dubinsky Z, Karube I. Identification and characterization of mRNA transcripts differentially expressed in response to high salinity by means of differential display in the mangrove, Bruguiera gymnorrhiza . Plant Sci , 2002, 162(4): 499-505. [3] Amitai-Zeigerson H, Scolnik PA, Bar-Zvi D. Tomato Asr1 mRNA and protein are transiently expressed following salt stress, osmotic stress and treatment with abscisic acid. Plant Sci , 1995, 110(2): 205-213. [4] Ba FC, Zhao Y. The coastal soil resources in China. Chin J Soil Sci , 1997, (2): 49-51. 巴逢辰, 赵羿. 中国海涂土壤资源. 土壤通报, 1997, (2): 49-51. [5] Aoki A, Kanegami A, Mihara M, Kojima T, Shiraiwa M, Takahara H. Molecular cloning and characterization of a novel soybean gene encoding a leucine-zipper-like protein induced to salt stress. Gene , 2005, 356: 135-145. [6] Khan PSSV, Hoffmann L, Renaut J, Hausman JF. Current initiatives in proteomics for the analysis of plant salt tolerance. Curr Sci , 2007, 93(6): 807-817. [7] Papiernik SK, Lindstrom MJ, Schumacher JA, Farenhorst A, Stephens KD, Schumacher TE, Lobb DA. Variation in soil properties and crop yield across an eroded prairie landscape. JSWC , 2005, 60(6): 388-395. [8] Wang MY, Gu D, Liu TS, Wang ZQ, Guo XY, Hou W, Bai YF, Chen XP, Wang GY. Overexpression of a putative maize calcineurin B-like protein in Arabidopsis confers salt tolerance. Plant Mol Biol , 2007, 65(6): 733-746. [9] Aghaei K, Ehsanpour AA, Shah AH, Komatsu S. Proteome analysis of soybean hypocotyl and root under salt stress. Amino Acids , 2009, 36(1): 91-98. [10] Kubota M, Shimizu H. Nutrition and bone health. Soybean and soy foods, and bone health. Clin Calcium , 2009, 19(10): 1514-1519. [11] Chai CL, Wang YQ, Joshi T, Valliyodan B, Prince S, Michel L, Xu D, Nguyen HT. Soybean transcription factor ORFeome associated with drought resistance: a valuable resource to accelerate research on abiotic stress resistance. BMC Genomics , 2015, 16(1): 596. [12] Singh G. The soybean: botany, production and uses. Wallingford, UK: Centre Agriculture and Bioscience International(CABI), 2010. [13] Munns R, Tester M. Mechanisms of salinity tolerance. Annu Rev Plant Biol , 2008, 59: 651-681. [14] Luo Q, Yu B, Liu Y. Differential sensitivity to chloride and sodium ions in seedlings of Glycine max and G. soja under NaCl stress. J Plant Physiol , 2005, 162(9): 1003-1012. [15] Umezawa T, Shimizu K, Kato M, Ueda T. Enhancement of salt tolerance in soybean with NaCl pretreatment. Physiol Plant , 2000, 110(1): 59-63. [16] Shao GH, Song JZ. Preliminary studies on the evaluation of salt tolerance in soybean varieties. Sci Agric Sin , 1986, (6): 30-35. 邵桂花, 宋景芝, 刘惠令. 大豆种质资源耐盐性鉴定初报. 中国农业科学, 1986, 19(6): 30-35. [17] Guan RX, Qu Y, Guo Y, Yu LL, Liu Y, Jiang JH, Chen JG, Ren YL, Liu GY, Tian L, Jin LG, Liu ZX, Hong HL, Chang RZ, Gilliham M, Qiu LJ. Salinity tolerance in soybean is modulated by natural variation in GmSALT3. Plant J , 2014, 80(6): 937-950. [18] Parker R, Flowers TJ, Moore AL, Harpham NV. An accurate and reproducible method for proteome profiling of the effects of salt stress in the rice leaf lamina. J Exp Bot , 2006, 57(5): 1109-1118. [19] Wang ZL, Dai JR, Wang B. Map-based cloning for plants gene. Biotechnol Inform , 2000, (4): 21-27. 王泽立, 戴景瑞, 王斌. 植物基因的图位克隆. 生物技术通报, 2000, (4): 21-27. [20] Yan QT, Lu H, Mao WX, Li JY. Map-based cloning for plants gene isolation. Mol Plant Breeding , 2005, 3(4): 585-590. 闫其涛, 逯慧, 毛万霞, 李建粤. 植物基因分离的图位克隆技术. 分子植物育种, 2005, 3(4): 585-590. [21] Coulson A, Huynh C, Kozono Y, Shownkeen R. Chapter 22 the physical map of the Caenorhabditis elegans genome. Met Cell Biol , 1995, 48: 533-550. [22] Tanksley SD, Ganal MW, Martin GB. Chromosome landing: a paradigm for map-based gene cloning in plants with large genomes. Trends Genet , 1995, 11(2): 63-68. [23] Jing RC, Huang QY, Zhu YG. The application of map-based gene cloning method on isolating genes of plants. Hereditas ( Beijing ), 2000, 22(3): 180-185. 景润春, 黄青阳, 朱英国. 图位克隆技术在分离植物基因中的应用. 遗传, 2000, 22(3): 180-185. [24] Lee GJ, Boerma HR, Villagarcia MR, Zhou X, Carter Jr TE, Li Z, Gibbs MO. A major QTL conditioning salt tolerance in S-100 soybean and descendent cultivars. Theor Appl Genet , 2004, 109(8): 1610-1619. [25] Li B, Tian L, Zhang JY, Huang L, Han FX, Yan SR, Wang LZ, Zheng HK, Sun JM. Construction of a high-density genetic map based on large-scale markers developed by specific length amplified fragment sequencing (SLAF-seq) and its application to QTL analysis for isoflavone content in Glycine max. BMC Genomics , 2014, 15: 1086. [26] Hamwieh A, Xu DH. Conserved salt tolerance quantitative trait loci (QTL) in wild and cultivated soybean. Breeding Sci , 2008, 58(4): 355-359. [27] Tuyen DD, Lal SK, Xu DH. Identification of a major QTL allele from wild soybean (Glycine soja Sieb. & Zucc.) for increasing alkaline salt tolerance in soybean. Theor Appl Genet , 2010, 121(2): 229-236. [28] Li XN, Ramchiary N, Dhandapani V, Choi SR, Hur Y, Nou IS, Yoon MK, Lim YP. Quantitative trait loci mapping in Brassica rapa revealed the structural and functional conservation of genetic loci governing morphological and yield component traits in the A, B, and C subgenomes of Brassica species. DNA Res , 2013, 20(1): 1-16. [29] Jun TH, Rouf Mian MA, Michel AP. Genetic mapping of three quantitative trait loci for soybean aphid resistance in PI 567324. Heredity ( Edinb ), 2013, 111(1): 16-22. [30] Hamwieh A, Tuyen DD, Cong H, Benitez ER, Takahashi R, Xu DH. Identification and validation of a major QTL for salt tolerance in soybean. Euphytica , 2011, 179(3): 451-459. [31] Ha B-K, Vuong TD, Velusamy V, Nguyen HT, Shannon JG, Lee JD. Genetic mapping of quantitative trait loci conditioning salt tolerance in wild soybean (Glycine soja) PI 483463. Euphytica , 2013, 193(1): 79-88. [32] Su ZF, Liu SL, Wang HW, Ren SY. An analysis of the methods and characteristics of wheat QTL positioning. J Hetao College , 2014, 12(3): 75-77. 苏志芳, 刘双禄, 王海伟, 任素樱. 浅析小麦QTL定位的方法及特点. 河套学院学报, 2014, 12(3): 75-77. [33] 周明亮, 纳巴他, 张显泽, 张清建, 杨平贵. QTL定位方法的研究进展. 草业与畜牧, 2012, (5): 18-23. [34] Li H. Progress of study on the location of quantitative trait loci (QTL). J Yuzhou Univ (Nat Sci Ed) , 2002, 19(3): 8-13. 李宏. 数量性状基因座(QTL)定位的研究进展. 渝州大学学报: 自然科学版, 2002, 19(3): 8-13. [35] Li CL, Zheng KL. RAPD-based analysis for the QTLs related to plant height and heading date. Acta Genet Sin , 1998, 25(1): 34-39. 李春丽, 郑康乐. 应用RAPD标记检测与水稻株高和抽穗期有关的QTLs. 遗传学报, 1998, 25(1): 34-39. [36] Zhang YM, Xing GF, Liu MT, Liu XD, Han YH. Genome wide association study: Opportunities and challenges in genomic research. Biotechnol Bull , 2013, (6): 1-6. 张雁明, 邢国芳, 刘美桃, 刘晓东, 韩渊怀. 全基因组关联分析: 基因组学研究的机遇与挑战. 生物技术通报, 2013, (6): 1-6. [37] TU X, SHI LS, WANG F, WANG Q. Genomewide association study: advances, challenges and deliberation. Progr Physiol Sci , 2010, 41(2): 87-94. 凃欣, 石立松, 汪樊, 王擎. 全基因组关联分析的进展与反思. 生理科学进展, 2010, 41(2): 87-94. [38] Risch N, Merikangas K. The future of genetic studies of complex human diseases. Sci , 1996, 273(5281): 1516-1517. [39] Hansen M, Kraft T, Ganestam S, Säll T, Nilsson NO. Linkage disequilibrium mapping of the bolting gene in sea beet using AFLP markers. Genet Res , 2001, 77(1): 61-66. [40] Qi XP, Li MW, Xie M, Liu X, Ni M, Shao GH, Song C, Yim AKY, Tao Y, Wong FL, Isobe S, Wong CF, Wong KS, Xu CY, Li CQ, Wang Y, Guan R, Sun FM, Fan GY, Xiao ZX, Zhou F, Phang TH, Liu X, Tong SW, Chan TF, Yiu SM, Tabata S, Wang J, Xu X, Lam HM. Identification of a novel salt tolerance gene in wild soybean by whole-genome sequencing. Nat Commun , 2014, 5: 4340. [41] Luo GZ, Wang HW, Huang J, Tian AG, Wang YJ, Zhang JS, Chen SY. A putative plasma membrane cation/proton antiporter from soybean confers salt tolerance in Arabidopsis . Plant Mol Biol , 2005, 59(5): 809-820. [42] Li WY, Wong FL, Tsai SN, Phang TH, Shao GH, Lam HM. Tonoplast-located GmCLC1 and GmNHX1 from soybean enhance NaCl tolerance in transgenic bright yellow (BY)-2 cells. Plant Cell Environ , 2006, 29(6): 1122-1137. [43] Wong TH, Li MW, Yao XQ, Lam HM. The GmCLC1 protein from soybean functions as a chloride ion transporter. J Plant Physiol , 2013, 170(1): 101-104. [44] Zhou GA, Guan RX, Li YH, Chang RZ, Qiu LJ. Molecular characterization of GmNHX2, a Na + /H + antiporter gene homolog from soybean, and its heterologous expression to improve salt tolerance in Arabidopsis . Chin Sci Bull , 2009, 54(19): 3536-3545. 周国安, 关荣霞, 李英慧, 常汝镇, 邱丽娟. 异源表达一个大豆Na + /H + 逆向转运蛋白基因 GmNHX2 提高拟南芥的耐盐性 . 科学通报, 2009, 54(17): 2508-2516. [45] Chen HT, Chen X, Gu HP, Wu BY, Zhang HM, Yuan XX, Cui XY. GmHKT1; 4, a novel soybean gene regulating Na + /K + ratio in roots enhances salt tolerance in transgenic plants. Plant Growth Regulat , 2014, 73(3): 299-308. [46] Nie WX, Xu L, Yu BJ. A putative soybean GmsSOS1 confers enhanced salt tolerance to transgenic Arabidopsis sos1-1 mutant. Protoplasma , 2015, 252(1): 127-134. [47] Wang YL, Wang H, Ma YJ, Du HY, Yang Q, Yu DY. Identification of transcriptional regulatory nodes in soybean defense networks using transient co-transactivation assays. Front Plant Sci , 2015, 6: 915. [48] Aoyagi LN, Lopes-Caitar VS, de Carvalho MCCG, Darben LM, Polizel-Podanosqui A, Kuwahara MK, Nepomuceno AL, Abdelnoor RV, Marcelino-Guimarães FC. Genomic and transcriptomic characterization of the transcription factor family R2R3-MYB in soybean and its involvement in the resistance responses to Phakopsora pachyrhizi . Plant Sci , 2014, 229: 32-42. [49] Liao Y, Zou HF, Wang HW, Zhang WK, Ma B, Zhang JS, Chen SY. Soybean GmMYB76 , GmMYB92 , and GmMYB177 genes confer stress tolerance in transgenic Arabidopsis plants. Cell Res , 2008, 18(10): 1047-1060. [50] Niu CF, Wei W, Zhou QY, Tian AG, Hao YJ, Zhang WK, Ma B, Lin Q, Zhang ZB, Zhang JS, Chen SY. Wheat WRKY genes TaWRKY2 and TaWRKY19 regulate abiotic stress tolerance in transgenic Arabidopsis plants. Plant Cell Environ , 2012, 35(6): 1156-1170. [51] Hao YJ, Wei W, Song QX, Chen HW, Zhang YQ, Wang F, Zou HF, Lei G, Tian AG, Zhang WK, Ma B, Zhang JS, Chen SY. Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants. Plant J , 2011, 68(2): 302-313. [52] Seo YJ, Park JB, Cho YJ, Jung C, Seo HS, Park SK, Nahm BH, Song JT. Overexpression of the ethylene- responsive factor gene BrERF4 from Brassica rapa increases tolerance to salt and drought in Arabidopsis plants. Mol Cells , 2010, 30(3): 271-277. [53] Jeong JS, Kim YS, Baek KH, Jung H, Ha SH, Do Choi Y, Kim M, Reuzeau C, Kim JK. Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions. Plant Physiol , 2010, 153(1): 185-197. [54] Zou XL, Neuman D, Shen QXJ. Interactions of two transcriptional repressors and two transcriptional activators in modulating gibberellin signaling in aleurone cells. Plant Physiol , 2008, 148(1): 176-186. [55] Liao Y, Zou HF, Wei W, Hao YJ, Tian AG, Huang J, Liu YF, Zhang JS, Chen SY. Soybean GmbZIP44 , GmbZIP62 and GmbZIP78 genes function as negative regulator of ABA signaling and confer salt and freezing tolerance in transgenic Arabidopsis . Planta , 2008, 228(2): 225-240. [56] Nakashima K, Tran LSP, Van Nguyen D, Fujita M, Maruyama K, Todaka D, Ito Y, Hayashi N, Shinozaki K, Yamaguchi-Shinozaki K. Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J , 2007, 51(4): 617-630. [57] Hu HH, Dai M,Q Yao JL, Xiao BZ, Li XH, Zhang QF, Xiong LZ. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci USA , 2006, 103(35): 12987-12992. [58] Tran LSP, Nakashima K, Sakuma Y, Simpson SD, Fujita Y, Maruyama K, Fujita M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell , 2004, 16(9): 2481-2498. [59] DuanMu HZ, Wang Y, Bai X, Cheng SF, Deyholos MK, Wong GKS, Li D, Zhu D, Li R, Yu Y, Cao L, Chen C, Zhu YM. Wild soybean roots depend on specific transcription factors and oxidation reduction related genesin response to alkaline stress. Funct Integr Genomics , 2015, 15(6): 651-660. [60] Tian AG, Wang J, Cui P, Han YJ, Xu H, Cong LJ, Huang XG, Wang XL, Jiao YZ, Wang BJ, Wang YJ, Zhang JS, Chen SY. Characterization of soybean genomic features by analysis of its expressed sequence tags. Theor Appl Genet , 2004, 108(5): 903-913. [61] Rao SS, El-Habbak MH, Havens WM, Singh A, Zheng DM, Vaughn L, Haudenshield JS, Hartman GL, Korban SS, Ghabrial SA. Overexpression of GmCaM4 in soybean enhances resistance to pathogens and tolerance to salt stress. Mol Plant Pathol , 2014, 15(2): 145-160. [62] Zhang YW, Zhao L, Li HY, Gao Y, Li YG, Wu XX, Teng WL, Han YP, Zhao X, Li WB. GmGBP1 , a homolog of human ski interacting protein in soybean, regulates flowering and stress tolerance in Arabidopsis . BMC Plant Biol , 2013, 13: 21. [63] Wang F, Chen HW, Li QT, Wei W, Li W, Zhang WK, Ma B, Bi YD, Lai YC, Liu XL, Man WQ, Zhang JS, Chen SY. GmWRKY27 interacts with GmMYB174 to reduce expression of GmNAC29 for stress tolerance in soybean plants. Plant J , 2015, 83(2): 224-236. [64] Jin HX, Xu GL, Meng QC, Huang F, Yu DY. GmNAC5, a NAC transcription factor, is a transient response regulator induced by abiotic stress in soybean. Sci World J , 2013, 2013: 768972. [65] Pinheiro GL, Marques CS, Costa MDBL, Reis PAB, Alves MS, Carvalho CM, Fietto LG, Fontes EPB. Complete inventory of soybean NAC transcription factors: sequence conservation and expression analysis uncover their distinct roles in stress response. Gene , 2009, 444(1-2): 10-23. [66] Tran LSP, Quach TN, Guttikonda SK, Aldrich DL, Kumar R, Neelakandan A, Valliyodan B, Nguyen HT. Molecular characterization of stress-inducible GmNAC genes in soybean. Mol Genet Genomics , 2009, 281(6): 647-664. [67] Le DT, Nishiyama R, Watanabe Y, Mochida K, Yamaguchi-Shinozaki K, Shinozaki K, Tran LS. Genome-wide survey and expression analysis of the plant-specific NAC transcription factor family in soybean during development and dehydration stress. DNA Res , 2011, 18(4): 263-276. [68] Jin HX, Xu GL, Meng QC, Huang F, Yu DY. GmNAC5, a NAC transcription factor, is a transient response regulator induced by abiotic stress in soybean. Sci World J , 2013, 2013: 768972. [69] Quach TN, Tran LSP, Valliyodan B, Nguyen HTM, Kumar R, Neelakandan AK, Guttikonda SK, Sharp RE, Nguyen HT. Functional analysis of water stress-responsive soybean GmNAC003 and GmNAC004 transcription factors in lateral root development in Arabidopsis . PLoS One , 2014, 9(1): e84886. [70] Li XY, Gao SQ, Tang YM, Li L, Zhang FJ, Feng BE, Fang ZF, Ma LJ, Zhao CP. Genome-wide identification and evolutionary analyses of bZIP transcription factors in wheat and its relatives and expression profiles of anther development related TabZIP genes. BMC Genomics , 2015, 16: 976. [71] Pandey SP, Somssich IE. The role of WRKY transcription factors in plant immunity. Plant Physiol , 2009, 150(4): 1648-1655. [72] Yamasaki K, Kigawa T, Inoue M, Tateno M, Yamasaki T, Yabuki T, Aoki M, Seki E, Matsuda T, Tomo Y, Hayami N, Terada T, Shirouzu M, Tanaka A, Seki M, Shinozaki K, Yokoyama S. Solution structure of an Arabidopsis WRKY DNA binding domain. Plant Cell , 2005, 17(3): 944-956. [73] Liao Y, Zhang JS, Chen SY, Zhang WK. Role of soybean GmbZIP132 under abscisic acid and salt stresses. J Integr Plant Biol , 2008, 50(2): 221-230. [74] Gao SQ, Chen M, Xu ZS, Zhao CP, Li LC, Xu HJ, Tang YM, Zhao X, Ma YZ. The soybean GmbZIP1 transcription factor enhances multiple abiotic stress tolerances in transgenic plants. Plant Mol Biol , 2011, 75(6): 537-553. [75] Xu ZL, Ali Z, Xu L, He XL, Huang YH, Yi JX, Shao HB, Ma HX, Zhang DY. The nuclear protein GmbZIP110 has transcription activation activity and plays important roles in the response to salinity stress in soybean. Sci Rep , 2016, 6: 20366. [76] Wei W, Huang J, Hao YJ, Zou HF, Wang HW, Zhao JY, Liu XY, Zhang WK, Ma B, Zhang JS, Chen SY. Soybean GmPHD-type transcription regulators improve stress tolerance in transgenic Arabidopsis plants. PLoS One , 2009, 4(9): e7209. [77] Agarwal PK, Agarwal P, Reddy MK, Sopory SK. Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep , 2006, 25(12): 1263-1274. [78] Li XP, Tian AG, Luo GZ, Gong ZZ, Zhang JS, Chen SY. Soybean DRE-binding transcription factors that are responsive to abiotic stresses. Theor Appl Genet, 2005, 110(8): 1355-1362. [79] Gao SQ, Xu HJ, Cheng XG, Chen M, Xu ZS, Li LC, Ye XG, Du LP, Hao XY, Ma YZ. Improvement of wheat drought and salt tolerance by expression of a stress-inducible transcription factor Gm DREB of soybean ( Glycine max ). Chin Sci Bull , 2005, 50(23): 2714-2723. [80] Chen YY, Chen PY, De Los Reyes BG. Differential responses of the cultivated and wild species of soybean to dehydration stress. Crop Sci , 2006, 46(5): 2041-2046. [81] Chen M, Wang QY, Cheng XG, Xu ZS, Li LC, Ye XG, Xia LQ, Ma YZ. GmDREB2 , a soybean DRE-binding transcription factor, conferred drought and high-salt tolerance in transgenic plants. Biochem Biophys Res Commun , 2007, 353(2): 299-305. [82] Jin TC, Chang Q, Li WF, Yin DX, Li ZJ, Wang DL, Liu B, Liu LX. Stress-inducible expression of GmDREB1 conferred salt tolerance in transgenic alfalfa. Plant Cell Tiss Organ Cult , 2010, 100(2): 219-227. [83] Kidokoro S, Watanabe K, Ohori T, Moriwaki T, Maruyama K, Mizoi J, Htwe NMPS, Fujita Y, Sekita S, Shinozaki K, Yamaguchi-Shinozaki K. Soybean DREB1/CBF-type transcription factors function in heat and drought as well as cold stress-responsive gene expression. Plant J , 2015, 81(3): 505-518. [84] Chen M, Xu ZL, Xia LQ, Li LC, Cheng XG, Dong JH, Wang QY, Ma YZ. Cold-induced modulation and functional analyses of the DRE-binding transcription factor gene, GmDREB3 , in soybean ( Glycine max L.). J Exp Bot , 2008, 60(1): 121-135. [85] Engels C, Fuganti-Pagliarini R, Marin SRR, Marcelino-Guimarães FC, Oliveira MCN, Kanamori N, Mizoi J, Nakashima K, Yamaguchi-Shinozaki K, Nepomuceno AL. Introduction of the rd29A : AtDREB2A CA gene into soybean ( Glycine max L. Merril) and its molecular characterization in leaves and roots during dehydration. Genet Mol Biol , 2013, 36(4): 556-565. [86] Xu DB, Yu YH, Han QL, Ma YN, Gao SQ, Tian Y, Xu ZS, Li LC, Qu YY, Ma YZ, Chen M, Chen YF. Characteristics and Function of a GmDREB5-Interacting Protein GmUBC13 in Soybean. Sci Agric Sin , 2014, 47(18): 3534-3544. 徐东北, 于月华, 韩巧玲, 马亚男, 高世庆, 田野, 徐兆师, 李连城, 曲延英, 马有志, 陈明, 陈耀锋. 大豆( Glycine max )GmDREB5互作蛋白GmUBC13的特性及功能. 中国农业科学, 2014, 47(18): 3534-3544. [87] Cai D, Zheng YZ, Lan Y. Expression of Em gene (LEA1) from soybean mimature seeds confers salt tolerance to Escherichia coli and tobacco plants. J Shenzhen Univ: Sci Eng , 2006, 23(3): 230-236. 蔡丹, 郑易之, 兰英. 大豆LEA蛋白Em的表达可提高大肠杆菌和烟草耐盐性. 深圳大学学报(理工版), 2006, 23(3): 230-236. [88] Liu Y, Li RH, Zheng YZ, Cai WB. Soybean PM2 protein and its 22-mer region enhance salt tolerance of tobacco plants. J Shenzhen Univ: Sci Eng , 2007, 24(1): 95-101. 刘昀, 李冉辉, 郑易之, 蔡文斌. 大豆PM2蛋白及其结构域可提高烟草耐盐性. 深圳大学学报(理工版), 2007, 24(1): 95-101. [89] Zhou GA, Chang RZ, Qiu LJ. Overexpression of soybean ubiquitin-conjugating enzyme gene GmUBC2 confers enhanced drought and salt tolerance through modulating abiotic stress-responsive gene expression in Arabidopsis . Plant Mol Biol , 2010, 72(4-5): 357-367. [90] Ji W, Zhu YM, Li Y, Yang L, Zhao XW, Cai H, Bai X. Over-expression of a glutathione S -transferase gene, GsGST, from wild soybean ( Glycine soja ) enhances drought and salt tolerance in transgenic tobacco. Biotechnol Lett , 2010, 32(8): 1173-1179. [91] Wang YX, Suo HC, Zheng Y, Liu KD, Zhuang CX, Kahle KT, Ma H, Yan XL. The soybean root-specific protein kinase GmWNK1 regulates stress-responsive ABA signaling on the root system architecture. Plant J , 2010, 64(2): 230-242. [92] Zhou L, Wang C, Liu RF, Han Q, Vandeleur RK, Du J, Tyerman S, Shou HX. Constitutive overexpression of soybean plasma membrane intrinsic protein GmPIP1; 6 confers salt tolerance. BMC Plant Biol , 2014, 14: 181. [93] Sobhanian H, Razavizadeh R, Nanjo Y, Ehsanpour AA, Jazii FR, Motamed N, Komatsu S. Proteome analysis of soybean leaves, hypocotyls and roots under salt stress. Proteome Sci , 2010, 8: 19. [94] Ali Z, Zhang DY, Xu ZL, Xu L, Yi JX, He XL, Huang YH, Liu XQ, Khan AA, Trethowan RM, Ma HX. Uncovering the salt response of soybean by unraveling its wild and cultivated functional genomes using tag sequencing. PLoS One , 2012, 7(11): e48819. |
[1] | 孙兆庆, 闫波. 转录因子GATA6在心血管疾病中的作用及其调控机制[J]. 遗传, 2019, 41(5): 375-383. |
[2] | 于好强,孙福艾,冯文奇,路风中,李晚忱,付凤玲. 转录因子BES1/BZR1调控植物生长发育及抗逆性[J]. 遗传, 2019, 41(3): 206-214. |
[3] | 李慧卿, 陈超, 陈冉冉, 宋雪薇, 李佶娜, 朱延明, 丁晓东. 利用CRISPR/Cas9双基因敲除系统初步解析大豆GmSnRK1.1和GmSnRK1.2对ABA及碱胁迫的响应[J]. 遗传, 2018, 40(6): 496-507. |
[4] | 鞠君毅,赵权. γ-珠蛋白基因表达调控机制与临床应用[J]. 遗传, 2018, 40(6): 429-444. |
[5] | 丁庆倩,王小婷,胡利琴,齐欣,葛林豪,徐伟亚,徐兆师,周永斌,贾冠清,刁现民,闵东红,马有志,陈明. 谷子MYB类转录因子SiMYB42提高转基因拟南芥低氮胁迫耐性[J]. 遗传, 2018, 40(4): 327-338. |
[6] | 任岚,肖茹丹,张倩,娄晓敏,张昭军,方向东. KLF1和KLF9对K562细胞红系分化的协同调控作用[J]. 遗传, 2018, 40(11): 998-1006. |
[7] | 张玲, 何建波. GATA6在肝脏发育中的作用及调控机制[J]. 遗传, 2018, 40(1): 22-32. |
[8] | 岳敏, 杨禹, 郭改丽, 秦曦明. 哺乳动物生物钟的遗传和表观遗传研究进展[J]. 遗传, 2017, 39(12): 1122-1137. |
[9] | 郭文雅,崔艳梅,王婷婷,喻德跃,黄方. 野生大豆花发育相关基因GsLFY的功能研究[J]. 遗传, 2017, 39(1): 56-65. |
[10] | 向小华, 吴新儒, 晁江涛, 杨明磊, 杨帆, 陈果, 刘贯山, 王元英. 普通烟草WRKY基因家族的鉴定及表达分析[J]. 遗传, 2016, 38(9): 840-856. |
[11] | 李晓旭, 刘成, 李伟, 张增林, 高晓明, 周慧, 郭永峰. 番茄WOX转录因子家族的鉴定及其进化、表达分析[J]. 遗传, 2016, 38(5): 444-460. |
[12] | 杨明磊, 晁江涛, 王大伟, 胡军华, 吴华, 龚达平, 刘贯山. 烟草C2H2锌指蛋白转录因子家族成员的鉴定与表达分析[J]. 遗传, 2016, 38(4): 337-349. |
[13] | 翟亚男, 许泉, 郭亚, 吴强. 原钙粘蛋白基因簇调控区域中成簇的CTCF结合位点分析[J]. 遗传, 2016, 38(4): 323-336. |
[14] | 谷彦冰, 冀志蕊, 迟福梅, 乔壮, 徐成楠, 张俊祥, 周宗山, 董庆龙. 桃WRKY基因家族全基因组鉴定和表达分析[J]. 遗传, 2016, 38(3): 254-270. |
[15] | 马建辉, 仝豆豆, 张文利, 张黛静, 邵云, 杨云, 姜丽娜. 乌拉尔图小麦NAC转录因子的筛选与分析[J]. 遗传, 2016, 38(3): 243-253. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: