遗传 ›› 2016, Vol. 38 ›› Issue (11): 992-1003.doi: 10.16288/j.yczz.16-086

• 综述 • 上一篇    下一篇

大豆耐盐相关QTLs鉴定和功能基因研究进展

王楠, 赵士振, 吕孟华, 向凤宁, 李朔   

  1. 山东大学生命科学学院,植物细胞工程与种质创新教育部重点实验室,济南 250100
  • 收稿日期:2016-03-14 出版日期:2016-11-20 发布日期:2016-08-23
  • 通讯作者: 李朔,博士,讲师,研究方向:植物细胞工程与种质创新。E-mail: lishuo@sdu.edu.cn
  • 作者简介:王楠,博士研究生,研究方向:细胞生物学。E-mail: wangnan1991gogo@163.com
  • 基金资助:
    国家高技术研究发展计划项目(863计划)(编号:2013AA102602-4)和国家自然科学基金项目(编号:31471515,31270328,31201269)资助

Research progress on identification of QTLs and functional genes involved in salt tolerance in soybean

Nan Wang, Shizhen Zhao, Menghua Lv, Fengning Xiang, Shuo Li   

  1. Plant Cell Engineering and Germplasm Innovation Key Lab of Ministry of Education, Life Sciences School of Shandong University, Jinan 250100, China
  • Received:2016-03-14 Online:2016-11-20 Published:2016-08-23
  • Supported by:
    [Supported by the High Technology Research and Development Program of China (863 Program)(No. 2013AA102602-4) and the National Nature Science Foundation of China(Nos. 31471515, 31270328, 31201269)]

摘要: 大豆(Glycine max (L.) Merill)是重要的粮食作物和经济作物,盐胁迫能造成大豆产量的大幅度降低。本文综述了通过正向遗传学手段获得的大豆耐盐数量性状位点(Quantitative trait locus, QTL)以及通过反向遗传学方法获得的大豆耐盐功能基因方面的研究进展。目前,正向遗传学发掘基因主要有图位克隆(Map-based cloning)和全基因组关联分析(Genome-wide association study, GWAS)两种方案,其中通过图位克隆在大豆中已经获得了6个耐盐QTL位点并且定位了1个重要的耐盐基因;利用GWAS在大豆中获得了1个耐盐功能基因。利用反向遗传学在大豆中获得了大量的耐盐相关功能基因并在模式植物中验证了其功能,主要包括离子转运蛋白基因和转录因子基因。这些研究为揭示大豆耐盐分子机制以及通过分子标记辅助育种或转基因技术创制耐盐大豆奠定了基础。

关键词: 土壤盐渍化, 大豆, 盐胁迫, QTL, 转录因子

Abstract: The yield of soybean is substantially reduced when the crop is grown in salinity-affected soil. This review summarizes the progress achieved in defining the genetic basis of salinity tolerance. Both forward (uncovering the genetic basis of a phenotype by exploiting natural or induced mutations) and reverse (defining the phenotype which arises as a result of an altered DNA sequence) genetics methods have been used to reveal the function of key salinity response genes. Quantitative trait locus analysis has identified six regions of the genome which harbor loci influencing salinity tolerance, and positional cloning has succeeded in isolating one important salt tolerant gene. Meanwhile the application of the genome-wide association study technique has led to the isolation of a second gene involved in salinity tolerance. Reverse genetics experiments have highlighted a number of salinity response genes, mainly including ion transporter genes and transcription factor genes. These studies lay the foundations for understanding the mechanistic basis of salinity tolerance in soybean, knowledge of which would be essential to enable the breeding of highly salinity tolerant soybean cultivars through the use of marker-assisted selection or transgenesis.

Key words: salinity tolerance, soybean, salt stress, QTL, transcription factors