[1] 谢树章, 刘亚娟, 秦平伟, 张迷. 植物几丁质酶及应用研究进展. 安徽农学通报, 2009, 15(8): 58-61.[2] 蒋红彬, 张瀛, 蒋千里, 李树品. 几丁质酶的研究概况. 山东科学, 2000, 13(4): 41-45.[3] Meins F, Fritig B, Linthorst HJM, Mikkelsen JD, Neuhaus JM, Ryals J. Plant chitinase genes. Plant Mol Biol Rep, 1994, 12(2): S22-S28.[4] 张志忠, 吴菁华, 吕柳新, 林义章. 植物几丁质酶及其应用研究进展. 福建农林大学学报: 自然科学版, 2005, 34(4): 494-499.[5] Schlumbaum A, Mauch F, Vögeli U, Boller T. Plant chitinases are potent inhibitors of fungal growth. Nature, 1986, 324(6095): 365-367.[6] Collinge DB, Kragh KM, Mikkelsen JD, Nielsen KK, Rasmussen U, Vad K. Plant chitinases. Plant J, 1993, 3(1): 31-40.[7] Brogile K, Chet I, Holliday M, Cressman R, Biddle P, Knowhon S, Mauvais CJ, Broglie R. Transgenic Plants with enhanced resistance to the fungal pathogen Rhizoctonia solani. Science, 1991, 254(5035): 1194-l197.[8] 孟亮, 李红双, 金德敏, 崔德才, 王斌. 转几丁质酶基因黑杨的获得. 生物技术通报, 2004, (3): 48-51.[9] Grison R, Grezes-Besset B, Schneider M, Lucante N, Luellen O, Leguay JJ, Toppan A. Field tolerance to fungal pathogens of Brassica napus constitutively expressing a chimeric chitinase gene. Nat Biotechnol, 1996, 14(5): 643-646.[10] 南相日. 菜豆几丁质酶基因转化马铃薯及后代表达. 中国农学通报, 2006, 22(2): 75-77.[11] 王果萍, 王景雪, 孙毅, 崔贵梅, 孟玉平, 乔燕祥. 几丁质酶基因导入西瓜植株及其抗病性鉴定研究. 植物遗传资源学报, 2003, 4(2): 104-109.[12] Nishizawa Y, Nishio Z, Nakazono K, Soma M, Nakajima E, Ugaki M, Hibi T. Enhanced resistance to blast (Mag-naporthe grisea) in transgenic japonica rice by constitutive expression of rice chitinase. Theor Appl Genet, 1999, 99(3-4): 383-390.[13] Xiao YH, Li XB, Yang XY, Luo M, Hou L, Guo SH, Luo XY, Pei Y. Cloning and characterization of a balsam pear class I chitinase gene (Mcchit1) and its ectopic expression enhances fungal resistance in transgenic plants. Biosci Biotech Bioch, 2007, 71(5): 1211-1219.[14] 吴家和, 张献龙, 罗晓丽, 聂以春, 田颖川, 陈正华. 转几丁质酶和葡聚糖酶基因棉花的获得及其对黄萎病的抗性. 遗传学报, 2004, 31(2): 183-188.[15] Punja ZK, Raharjo SHT. Response of transgenic cucumber and carrot plants expressing different chitinase enzymes to inoculation with fungal pathogens. Plant Dis, 1996, 80(9): 999-1005.[16] 殷锡圣, 刘润进. 棉花黄萎病研究进展. 中国棉花, 1996, 23(5): 2-6.[17] Hudspeth RL, Hobbs SL, Anderson DM, Grula JW. Characterization and expression of chitinase and 1, 3-β-glucanase genes in cotton. Plant Mol Biol, 1996, 31(4): 911-916.[18] 李骥, 刘进元. 一个新型的棉花几丁质酶基因. 植物学报, 2003, 45(12): 1489-1496.[19] 杨郁文, 张保龙, 倪万潮, 沈新莲, 张香桂, 徐英俊. 两个棉花几丁质酶基因的克隆与表达分析. 棉花学报, 2008, 20(2): 88-93.[20] Rasmussen U, Bojsen K, Collinge DB. Cloning and characterization of a pathogen-induced chitinase in Bras-sica napus. Plant Mol Biol, 1992, 20(2): 277-287.[21] Li YZ, Zheng XH, Tang HL, Zhu JW, Yang JM. Increase of β-1, 3-glucanase and chitinase activities in cotton callus cells treated by salicylic acid and toxin of verticillium dahliae. Acta Bot Sin, 2003, 45(7): 802-808.[22] Koga D. Application of chitinase in agriculture. J Met Mater Miner, 2005, 15(1): 33-36.[23] Neuhaus JM, Sticher L, Meins F Jr, Boller T. A short C-terminal sequence is necessary and sufficient for the targeting of chitinases to the plant vacuole. Proc Natl Acad Sci USA, 1991, 88(22): 10362-10366.[24] Mikkelsen JD, Berglund L, Nielsen KK, Christiansen H, Bojsen K. Structure of endochitinase genes from sugar beets. In: Brine CJ, Sandford PA, Zikakis JP, eds. Advances in Chitin and Chitosan. Amsterdam: Elsevier, 1992: 344-353.[25] Nishimura MT, Stein M, Hou BH, Vogel JP, Edwards H, Somerville SC. Loss of a callose synthase results in sali-cylic acid-dependent disease resistance. Science, 2003, 301(5635): 969-972.[26] Penninckx IAMA, Thomma BPHJ, Buchala A, Métraux JP, Broekaert WF. Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis. P |