[1] Schuster SC. Next-generation sequencing transforms today’s biology. Nat Methods, 2008, 5(1): 16-18.[2] Shendure J, Ji H. Next-generation DNA sequencing. Nat Biotechnol, 2008, 26(10): 1135-1145.[3] Metzker ML. Sequencing technologies-the next generation. Nat Rev Genet, 2009, 11(1): 31-46.[4] Mardis ER. The impact of next-generation sequencing technology on genetics. Trends Genet, 2008, 24(3): 133-141.[5] Park PJ. ChIP-seq: advantages and challenges of a maturing technology. Nat Rev Genet, 2009, 10(10): 669-680.[6] Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet, 2009, 10(1): 57-63.[7] Wold B, Myers RM. Sequence census methods for functional genomics. Nat Methods, 2008, 5(1): 19-21.[8] Fouse SD, Nagarajan RP, Costello JF. Genome-scale DNA methylation analysis. Epigenomics, 2010, 2(1): 105-117.[9] Carey MF, Peterson CL, Smale ST. Chromatin immunoprecipitation (ChIP). Cold Spring Harbor Protocols, 2009, 2009(9): pdb. prot5279.[10] Sun JM, Chen HY, Davie JR. Differential distribution of unmodified and phosphorylated histone deacetylase 2 in chromatin. J Biol Chem, 2007, 282(45): 33227.[11] Massie CE, Mills IG. ChIPping away at gene regulation. EMBO Reports, 2008, 9(4): 337-343.[12] Cosseau C, Azzi A, Smith K, Freitag M, Mitta G, Grunau C. Native chromatin immunoprecipitation (N-ChIP) and ChIP-Seq of Schistosoma mansoni. Critical experimental parameters. Mol Biochem Parasitol, 2009, 166(1): 70-76.[13] Kharchenko PV, Tolstorukov MY, Park PJ. Design and analysis of ChIP-seq experiments for DNA-binding proteins. Nat Biotechnol, 2008, 26(12): 1351-1359.[14] Yamaguchi-Shinozaki K, Shinozaki K. Organization of cis-acting regulatory elements in osmotic-and cold-stress- responsive promoters. Trends Plant Sci, 2005, 10(2): 88-94.[15] Laird PW. Cancer epigenetics. Hum Mol Genet, 2005, 14(Suppl 1): R65-R76.[16] Barski A, Zhao KJ. Genomic location analysis by ChIP-Seq. J Cell Biochem, 2009, 107(1): 11-18.[17] Johnson DS, Mortazavi A, Myers RM, Wold B. Genome-wide mapping of in vivo protein-DNA interactions. Science, 2007, 316(5830): 1497-1502.[18] Schoenherr CJ, Anderson DJ. The neuron-restrictive silencer factor (NRSF): a coordinate repressor of multiple neuron-specific genes. Science, 1995, 267(5202): 1360-1363.[19] Kim CS, Hwang CK, Choi HS, Song KY, Law PY, Wei LN, Loh HH. Neuron-restrictive silencer factor (NRSF) functions as a repressor in neuronal cells to regulate the μ opioid receptor gene. J Biol Chem, 2004, 279(45): 46464-46473.[20] Boyle AP, Davis S, Shulha HP, Meltzer P, Margulies EH, Weng ZP, Furey TS, Crawford GE. High-resolution mapping and characterization of open chromatin across the genome. Cell, 2008, 132(2): 311-322.[21] Qin ZS, Yu JJ, Shen JC, Maher CA, Hu M, Kalyana- Sundaram S, Yu JD, Chinnaiyan AM. HPeak: an HMM-based algorithm for defining read-enriched regions in ChIP-Seq data. BMC Bioinformatics, 2010, 11(1): 369.[22] Wallerman O, Motallebipour M, Enroth S, Patra K, Bysani MSR, Komorowski J, Wadelius C. Molecular interactions between HNF4a, FOXA2 and GABP identified at regulatory DNA elements through ChIP-sequencing. Nucleic Acids Res, 2009, 37(22): 7498-7508.[23] Laajala TD, Raghav S, Tuomela S, Lahesmaa R, Aittokallio T, Elo L. A practical comparison of methods for detecting transcription factor binding sites in ChIP-seq experiments. BMC Genomics, 2009, 10(1): 618.[24] Mikkelsen TS, Ku MC, Jaffe DB, Issac B, Lieberman E, Giannoukos G, Alvarez P, Brockman W, Kim TK, Koche RP, Lee W, Mendenhall E, O’Donovan A, Presser A, Russ C, Xie XH, Meissner A, Wernig M, Jaenisch R, Nusbaum C, Lander ES, Bernstein BE. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature, 2007, 448(7153): 553-560.[25] Leonelli S, Diehl AD, Christie KR, Harris MA, Lomax J. How the gene ontology evolves. BMC Bioinformatics, 2011, 12: 325.[26] Torres NV, Voit EO. Pathway analysis and optimization in metabolic engineering. Cambridge: Cambridge University Press, 2002.[27] Bader GD, Cary MP, Sander C. Pathguide: a pathway resource list. Nucleic Acids Res, 2006, 34(Suppl. 1): D504-D506.[28] Wang ZB, Zang CZ, Rosenfeld JA, Schones DE, Barski A, Cuddapah S, Cui KR, Roh TY, Peng WQ, Zhang MQ, Zhao KJ. Combinatorial patterns of histone acetylations and methylations in the human genome. Nat Genet, 2008, 40(7): 897-903.[29] Whiteford N, Skelly T, Curtis C, Ritchie ME, Löhr A, Zaranek AW, Abnizova I, Brown C. Swift: primary data analysis for the Illumina Solexa sequencing platform. Bioinformatics, 2009, 25(17): 2194-2199.[30] 王曦, 汪小我, 王立坤, 冯智星, 张学工. 新一代高通量RNA测序数据的处理与分析. 生物化学与生物物理进展, 2010, 37(8): 834-846.[31] Li H, Ruan J, Durbin R. Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res, 2008, 18(11): 1851-1858.[32] Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol, 2009, 10(3): R25.[33] Wilbanks EG, Facciotti MT, Veenstra GJC. Evaluation of algorithm performance in ChIP-seq peak detection. Plos One, 2010, 5(7): e11471.[34] Robertson G, Hirst M, Bainbridge M, Bilenky M, Zhao YJ, Zeng TJ, Euskirchen G, Bernier B, Varhol R, Delaney A, Thiessen N, Griffith OL, He A, Marra M, Snyder M, Jones S. Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nat Methods, 2007, 4(8): 651-657.[35] Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nussbaum C, Myers RM, Brown M, Li W, Liu XS. Model-based analysis of ChIP-Seq (MACS). Genome Biol, 2008, 9(9): R137.[36] Valouev A, Johnson DS, Sundquist A, Medina C, Anton E, Batzoglou S, Myers RM, Sidow A. Genome-wide analysis of transcription factor binding sites based on ChIP-Seq data. Nat Methods, 2008, 5(9): 829-834.[37] Jothi R, Cuddapah S, Barski A, Cui KR, Zhao KJ. Genome-wide identification of in vivo protein-DNA binding sites from ChIP-Seq data. Nucleic Acids Res, 2008, 36(16): 5221-5231.[38] 李敏俐, 王薇, 陆祖宏. ChIP技术及其在基因组水平上分析DNA与蛋白质相互作用. 遗传, 2010, 32(2): 219-228. |