[1] Strahl BD, Allis CD. The language of covalent histone modifications. Nature, 2000, 403(6765): 41-45.[2] Taverna SD, Li HT, Ruthenburg AJ, Allis CD, Patel DJ. How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nat Struct Mol Biol, 2007, 14(11): 1025-1040.[3] Allis CD, Berger SL, Cote J, Dent S, Jenuwien T, Kouzarides T, Pillus L, Reinberg D, Shi Y, Shiekhattar R, Shilatifard A, Workman J, Zhang Y. New nomenclature for chromatin-modifying enzymes. Cell, 2007, 131(4): 633-636.[4] Rea S, Eisenhaber F, O'Carroll D, Strahl BD, Sun ZW, Schmid M, Opravil S, Mechtler K, Ponting CP, Allis CD, Jenuwein T. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature, 2000, 406(6796): 593-599.[5] Dillon SC, Zhang X, Trievel RC, Cheng XD. The SET-domain protein superfamily: protein lysine methyltrans-ferases. Genome Biol, 2005, 6(8): 227.[6] Nishioka K, Rice JC, Sarma K, Erdjument-Bromage H, Werner J, Wang Y, Chuikov S, Valenzuela P, Tempst P, Steward R, Lis JT, Allis CD, Reinberg D. PR-Set7 is a nucleosome-specific methyltransferase that modifies ly-sine 20 of histone H4 and is associated with silent chro-matin. Mol Cell, 2002, 9(6): 1201-1213.[7] Oda H, Okamoto I, Murphy N, Chu J, Price SM, Shen MM, Torres-Padilla ME, Heard E, Reinberg D. Monomethylation of histone H4-lysine 20 is involved in chromosome structure and stability and is essential for mouse development. Mol Cell Biol, 2009, 29(8): 2278-2295.[8] Rice JC, Nishioka K, Sarma K, Steward R, Reinberg D, Allis CD. Mitotic-specific methylation of histone H4 Lys 20 follows increased PR-Set7 expression and its localization to mitotic chromosomes. Genes Dev, 2002, 16(17): 2225-2230.[9] Fang J, Feng Q, Ketel CS, Wang HB, Cao R, Xia L, Erd-jument-Bromage H, Tempst P, Simon JA, Zhang Y. Puri-fication and functional characterization of SET8, a nucleosomal histone H4-lysine 20-specific methyltransferase. Curr Biol, 2002, 12(13): 1086-1099.[10] Abbas T, Shibata E, Park J, Jha S, Karnani N, Dutta A. CRL4Cdt2 regulates cell proliferation and histone gene expression by targeting PR-Set7/Set8 for degradation. Mol Cell, 2010, 40(1): 9-21.[11] Xiao B, Jing C, Kelly G, Walker PA, Muskett FW, Frenkiel TA, Martin SR, Sarma K, Reinberg D, Gamblin SJ, Wilson JR. Specificity and mechanism of the histone methyltransferase Pr-Set7. Genes Dev, 2005, 19(12): 1444-1454.[12] Qian C, Zhou MM. SET domain protein lysine methyltransferases: Structure, specificity and catalysis. Cell Mol Life Sci, 2006, 63(23): 2755-2763.[13] Guo HB, Guo H. Mechanism of histone methylation cata-lyzed by protein lysine methyltransferase SET7/9 and ori-gin of product specificity. Proc Natl Acad Sci USA, 2007, 104(21): 8797-8802.[14] Centore RC, Havens CG, Manning AL, Li JM, Flynn RL, Tse A, Jin JP, Dyson NJ, Walter JC, Zou L. CRL4Cdt2- mediated destruction of the histone methyltransferase Set8 prevents premature chromatin compaction in S phase. Mol Cell, 2010, 40(1): 22-33.[15] Jørgensen S, Eskildsen M, Fugger K, Hansen L, Larsen MSY, Kousholt AN, Syljuåsen RG, Trelle MB, Jensen ON, Helin K, Sørensen CS. SET8 is degraded via PCNA-coupled CRL4CDT2 ubiquitylation in S phase and after UV irradiation. J Cell Biol, 2011, 192(1): 43-54.[16] Oda H, Hübner MR, Beck DB, Vermeulen M, Hurwitz J, Spector DL, Reinberg D. Regulation of the histone H4 monomethylase PR-Set7 by CRL4Cdt2-mediated PCNA-dependent degradation during DNA damage. Mol Cell, 2010, 40(3): 364-376.[17] Brustel J, Tardat M, Kirsh O, Grimaud C, Julien E. Coupling mitosis to DNA replication: the emerging role of the histone H4-lysine 20 methyltransferase PR-Set7. Trends Cell Biol, 2011, 21(8): 452-460.[18] Wu SM, Wang WP, Kong XD, Congdon LM, Yokomori K, Kirschner MW, Rice JC. Dynamic regulation of the PR-Set7 histone methyltransferase is required for normal cell cycle progression. Genes Dev, 2010, 24(22): 2531-2542.[19] Liu W, Tanasa B, Tyurina OV, Zhou TY, Gassmann R, Liu WT, Ohgi KA, Benner C, Garcia-Bassets I, Aggarwal AK, Desai A, Dorrestein PC, Glass CK, Rosenfeld MG. PHF8 mediates histone H4 lysine 20 demethylation events involved in cell cycle progression. Nature, 2010, 466(7305): 508-512.[20] Li HT, Fischle W, Wang W, Duncan EM, Liang L, Murakami-Ishibe S, Allis CD, Patel DJ. Structural basis for lower lysine methylation state-specific readout by MBT repeats of L3MBTL1 and an engineered PHD finger. Mol Cell, 2007, 28(4): 677-691.[21] Sanders SL, Portoso M, Mata J, Bähler J, Allshire RC, Kouzarides T. Methylation of histone H4 lysine 20 con-trols recruitment of Crb2 to sites of DNA damage. Cell, 2004, 119(5): 603-614.[22] Yang H, Mizzen CA. The multiple facets of histone H4-lysine 20 methylation. Biochem Cell Biol, 2009, 87(1): 151-161.[23] Schotta G, Lachner M, Sarma K, Ebert A, Sengupta R, Reuter G, Reinberg D, Jenuwein T. A silencing pathway to induce H3-K9 and H4-K20 trimethylation at constitutive heterochromatin. Genes Dev, 2004, 18(11): 1251-1262.[24] Driskell I, Oda H, Blanco S, Nascimento E, Humphreys P, Frye M. The histone methyltransferase Setd8 acts in con-cert with c-Myc and is required to maintain skin. EMBO J, 2012, 31(3): 616-629.[25] Sakaguchi A, Steward R. Aberrant monomethylation of histone H4 lysine 20 activates the DNA damage check-point in Drosophila melanogaster. J Cell Biol, 2007, 176(2): 155-162.[26] Lu X, Simon MD, Chodaparambil JV, Hansen JC, Shokat KM, Luger K. The effect of H3K79 dimethylation and H4K20 trimethylation on nucleosome and chromatin structure. Nat Struct Mol Biol, 2008, 15(10): 1122-1124.[27] Shogren-Knaak M, Ishii H, Sun JM, Pazin MJ, Davie JR, Peterson CL. Histone H4-K16 acetylation controls chro-matin structure and protein interactions. Science, 2006, 311(5762): 844-847.[28] Hirota T, Gerlich D, Koch B, Ellenberg J, Peters JM. Dis-tinct functions of condensin I and II in mitotic chromosome assembly. J Cell Sci, 2004, 117(Pt 26): 6435-6445.[29] Kalakonda N, Fischle W, Boccuni P, Gurvich N, Hoya-Arias R, Zhao X, Miyata Y, Macgrogan D, Zhang J, Sims JK, Rice JC, Nimer SD. Histone H4 lysine 20 monomethylation promotes transcriptional repression by L3MBTL1. Oncogene, 2008, 27(31): 4293-4304.[30] Trojer P, Reinberg D. Beyond histone methyl-lysine binding: how malignant brain tumor (MBT) protein L3MBTL1 im-pacts chromatin structure. Cell Cycle, 2008, 7(5): 578-585.[31] Scharf AND, Meier K, Seitz V, Kremmer E, Brehm A, Imhof A. Monomethylation of lysine 20 on histone H4 facilitates chromatin maturation. Mol Cell Biol, 2009, 29(1): 57-67.[32] Qin JZ, Van Buren D, Huang HS, Zhong L, Mostoslavsky R, Akbarian S, Hock H. Chromatin protein L3MBTL1 is dispensable for development and tumor suppression in mice. J Biol Chem, 2010, 285(36): 27767-27775.[33] Wu SM, Rice JC. A new regulator of the cell cycle: the PR-Set7 histone methyltransferase. Cell Cycle, 2011, 10(1): 68-72.[34] Lee J, Zhou PB. SETting the clock for histone H4 mono-methylation. Mol Cell, 2010, 40(3): 345-346.[35] Yin YL, Yu VC, Zhu G, Chang DC. SET8 plays a role in controlling G1/S transition by blocking lysine acetylation in histone through binding to H4 N-terminal tail. Cell Cycle, 2008, 7(10): 1423-1432.[36] Remus D, Diffley JFX. Eukaryotic DNA replication control: lock and load, then fire. Curr Opin Cell Biol, 2009, 21(6): 771-777.[37] Tardat M, Brustel J, Kirsh O, Lefevbre C, Callanan M, Sardet C, Julien E. The histone H4 Lys 20 methyltransferase PR-Set7 regulates replication origins in mammalian cells. Nat Cell Biol, 2010, 12(11): 1086-1093.[38] Schotta G, Sengupta R, Kubicek S, Malin S, Kauer M, Callen E, Celeste A, Pagani M, Opravil S, De La Rosa- Velazquez IA, Espejo A, Bedford MT, Nussenzweig A, Busslinger M, Jenuwein T. A chromatin-wide transition to H4K20 monomethylation impairs genome integrity and programmed DNA rearrangements in the mouse. Genes Dev, 2008, 22(15): 2048-2061.[39] Miotto B, Struhl K. HBO1 histone acetylase activity is essential for DNA replication licensing and inhibited by Geminin. Mol Cell, 2010, 37(1): 57-66.[40] Jorgensen S, Elvers I, Trelle MB, Menzel T, Eskildsen M, Jensen ON, Helleday T, Helin K, Sorensen CS. The his-tone methyltransferase SET8 is required for S-phase pro-gression. J Cell Biol, 2007, 179(7): 1337-1345.[41] Congdon LM, Houston SI, Veerappan CS, Spektor TM, Rice JC. PR-Set7-mediated monomethylation of histone H4 lysine 20 at specific genomic regions induces transcriptional repression. J Cell Biochem, 2010, 110(3): 609-619.[42] Spektor TM, Congdon LM, Veerappan CS, Rice JC. The UBC9 E2 SUMO conjugating enzyme binds the PR-Set7 histone methyltransferase to facilitate target gene repres-sion. PLoS One, 2011, 6(7): e22785.[43] Shi XB, Kachirskaia I, Yamaguchi H, West LE, Wen H, Wang EW, Dutta S, Appella E, Gozani O. Modulation of p53 function by SET8-mediated methylation at lysine 382. Mol Cell, 2007, 27(4): 636-646.[44] West LE, Roy S, Lachmi-Weiner K, Hayashi R, Shi X, Appella E, Kutateladze TG, Gozani O. The MBT repeats of L3MBTL1 link SET8-mediated p53 methylation at ly-sine 382 to target gene repression. J Biol Chem, 2010, 285(48): 37725-37732.[45] Gan XQ, Wang JY, Xi Y, Wu ZL, Li YP, Li L. Nuclear Dvl, c-Jun, β-catenin, and TCF form a complex leading to stabilization of β-catenin-TCF interaction. J Cell Biol, 2008, 180(6): 1087-1100.[46] Kramps T, Peter O, Brunner E, Nellen D, Froesch B, Chatterjee S, Murone M, Züllig S, Basler K. Wnt/wingless signaling requires BCL9/legless-mediated recruitment of pygopus to the nuclear β-catenin-TCF complex. Cell, 2002, 109(1): 47-60.[47] Li ZF, Nie F, Wang S, Li L. Histone H4 Lys 20 mono-methylation by histone methylase SET8 mediates Wnt target gene activation. Proc Natl Acad Sci USA, 2011, 108(8): 3116-3123.[48] Li YY, Sun LY, Zhang Y, Wang DD, Wang F, Liang J, Gui B, Shang YF. The histone modifications governing TFF1 transcription mediated by estrogen receptor. J Biol Chem, 2011, 286(16): 13925-13936.[49] Wakabayashi KI, Okamura M, Tsutsumi S, Nishikawa NS, Tanaka T, Sakakibara I, Kitakami JI, Ihara S, Hashimoto Y, Hamakubo T, Kodama T, Aburatani H, Sakai J. The peroxisome proliferator-activated receptor γ/retinoid X receptor α heterodimer targets the histone modification enzyme PR-Set7/Setd8 gene and regulates adipogenesis through a positive feedback loop. Mol Cell Biol, 2009, 29(13): 3544-3555.[50] Kang YB, Massagué J. Epithelial-mesenchymal transitions: twist in development and metastasis. Cell, 2004, 118(3): 277-279.[51] Yang F, Sun LY, Li Q, Han X, Lei LD, Zhang H, Shang YF. SET8 promotes epithelial-mesenchymal transition and confers TWIST dual transcriptional activities. EMBO J, 2012, 31(1): 110-123.[52] Song FJ, Zheng H, Liu B, Wei S, Dai HJ, Zhang LA, Calin GA, Hao XH, Wei QY, Zhang W, Chen K. An miR-502-binding site single-nucleotide polymorphism in the 3′-untranslated region of the SET8 gene is associated with early age of breast cancer onset. Clin Cancer Res, 2009, 15(19): 6292-6300.[53] Frye M, Fisher AG, Watt FM. Epidermal stem cells are defined by global histone modifications that are altered by Myc-induced differentiation. PLoS One, 2007, 2(8): e763.[54] Wu MY, Tsai TF, Beaudet AL. Deficiency of Rbbp1/ Arid4a and Rbbp1l1/Arid4b alters epigenetic modifications and suppresses an imprinting defect in the PWS/AS domain. Genes Dev, 2006, 20(20): 2859-2870.[55] Pannetier M, Julien E, Schotta G, Tardat M, Sardet C, Jenuwein T, Feil R. PR-SET7 and SUV4-20H regulate H4 lysine-20 methylation at imprinting control regions in the mouse. EMBO Rep, 2008, 9(10): 998-1005.[56] Guo ZJ, Wu CS, Wang XL, Wang CJ, Zhang RX, Shan BE. A polymorphism at the miR-502 binding site in the 3'-untranslated region of the histone methyltransferase SET8 is associated with hepatocellular carcinoma outcome. Int J Cancer, 2012, 131(6): 1318-1322. |