[1] Shull GH. The composition of a field of maize. J Hered, 1908, 4(1): 296-301.[2] Birchler JA, Auger DL, Riddle NC. In search of the mo-lecular basis of heterosis. Plant Cell, 2003, 15(10): 2236-2239.[3] Birchler JA, Yao H, Chudalayandi S. Unraveling the ge-netic basis of hybrid vigor. Proc Natl Acad Sci USA, 2006, 103(35) 12957-12958.[4] Birchler JA, Yao H, Chudalayandi S, Vaiman D, Veitia RA. Heterosis. Plant Cell, 2010, 22(7): 2105-2112.[5] Troyer AF. Adaptedness and heterosis in corn and mule hybrids. Crop Sci, 2006, 46(2): 528- 543.[6] Lippman ZB, Zamir D. Heterosis: revisiting the magic. Trend Genet, 2007, 23(2): 60-66.[7] Springer NM, Stupar RM. Allelic variation and heterosis in maize: How do two halves make more than a whole? Genome Res, 2007, 17(3): 264-275.[8] Hochholdinger F, Hoecker N. Towards the molecular basis of heterosis. Trends Plant Sci, 2007, 12(9): 427-432.[9] Goff SA. A unifying theory for general multigenic hetero-sis: energy efficiency, protein metabolism, and implica-tions for molecular breeding. New Phytol, 2011, 189(4): 923-937.[10] Sanghera GS, Wani SH, Hussain W, Shafi W, Harib-hushan A, Singh NB. The magic of heterosis: New tools and complexities. Nat Sci, 2011, 9(11): 42-53.[11] Baranwal VK, Mikkilineni V, Zehr UB, Tyagi AK, Kapoor S. Heterosis: emerging ideas about hybrid vigour. J Exp Bot, 2012, 63(18): 6309-6314.[12] Kaeppler S. Heterosis: Many genes, many mechanisms- End the search for an undiscovered unifying theory. ISRN Bot, 2012, doi: 10.5402/2012/682824.[13] Davenport CB. Degeneration, albinism and inbreeding. Science, 1908, 28(718): 454-455.[14] East EM. Inbreeding in corn. Rep Connecticut Agric Exp Stn, 1908, 1907: 419-429.[15] Yu SB, Li JX, Xu CG, Tan YF, Gao YJ, Li XH, Zhang QF, Saghai Maroof MA. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA, 1997, 94(17) 9226-9231.[16] Li ZK, Luo LJ, Mei HW, Wang DL, Shu QY, Tabien R, Zhong DB, Ying CS, Stansel JW, Khush GS, Paterson AH. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. I. Biomass and grain yield. Genetics, 2001, 158(4): 1737-1753.[17] Knight JC. Allele-specific gene expression uncovered. Trends Genet, 2004, 20(3): 113- 116.[18] Kliebenstein DJ, West MA, van Leeuwen H, Kim K, Doerge RW, Michelmore RW, St Clair DA. Genomic survey of gene expression diversity in Arabidopsis thaliana. Genetics, 2006, 172(2): 1179- 1189.[19] Brem RB, Yvert G, Clinton R, Kruglyak L. Genetic dis-section of transcriptional regulation in budding yeast. Science, 2002, 296(5568): 752-755.[20] Romagnoli S, Maddaloni M, Livini C, Motto M. Relationship between gene expression and hybrid vigor in primary root tips of young maize (Zea mays L.) plantlets. Theor Appl Genet, 1990, 80(6): 769-775.[21] Guo M, Rupe MA, Zinselmeier C, Habben J, Bowen BA, Smith OS. Allelic variation of gene expression in maize hybrids. Plant Cell, 2004, 16(7): 1707-1716.[22] Cowles CR, Hirschhorn JN, Altshuler D, Lander ES. Detection of regulatory variation in mouse genes. Nat Genet, 2002, 32(3): 432-437.[23] Yan H, Yuan W, Velculescu VE, Vogelstein B, Kinzler KW. Allelic variation in human gene expression. Science, 2002, 297(5584): 1143.[24] Springer NM, Stupar RM. Allele-specific expression pat-terns reveal biases and embryo- specific parent-of-origin ef-fects in hybrid maize. Plant Cell, 2007, 19(8): 2391-2402.[25] Paschold A, Jia Y, Marcon C, Lund S, Larson NB, Yeh CT, Ossowski S, Lanz C, Nettleton D, Schnable PS, Hochholdinger F. Complementation contributes to transcriptome complexity in maize (Zea mays L.) hybrids relative to their inbred parents. Genome Res, 2012, 22(12): 2445-2454.[26] Zhuang Y, Adams KL. Extensive allelic variation in gene expression in Populus F1 hybrids. Genetics, 2007, 177(4): 1987-1996.[27] Adams KL, Wendel JF. All |