遗传 ›› 2013, Vol. 35 ›› Issue (10): 1179-1188.doi: 10.3724/SP.J.1005.2013.01179
王宏1,2, 李刚波3, 张大勇4, 蔺经1, 盛宝龙1, 韩金龙3, 常有宏1,2
收稿日期:
2013-04-26
修回日期:
2013-05-22
出版日期:
2013-10-20
发布日期:
2013-10-25
通讯作者:
常有宏
E-mail:cyh@jaas.ac.cn
基金资助:
江苏省自然科学基金项目(编号:BK2011674)资助
WANG Hong1,2, LI Gang-Bo3, ZHANG Da-Yong4, LIN Jing1, SHENG Bao-Long1, HAN Jin-Long3, CHANG You-Hong1,2
Received:
2013-04-26
Revised:
2013-05-22
Online:
2013-10-20
Published:
2013-10-25
摘要:
HD-Zip转录因子属于Homeobox蛋白家族, 是植物特异转录因子, 由高度保守的HD(Homeodomain)结构域和Leu zipper(Zip)元件组成, 前者与DNA特异结合, 后者介导蛋白二聚体的形成。HD-Zip转录因子家族包括4个亚家族(HD-Zip Ⅰ-Ⅳ), 其成员通过与其他蛋白互作、参与激素介导的信号途径, 从而调控植物生长发育、光形态建成、花发育、果实发育和植物对逆境应答等生物学过程。文章对近几年关于植物HD-Zip转录因子参与上述生物学功能方面的研究进行了综述, 以期对新功能基因的挖掘和应用研究以及HD-Zip调控机制的阐明奠定基础。
王宏 李刚波 张大勇 蔺经 盛宝龙 韩金龙 常有宏. 植物HD-Zip转录因子的生物学功能[J]. 遗传, 2013, 35(10): 1179-1188.
WANG Hong LI Gang-Bo ZHANG Da-Yong LIN Jing SHENG Bao-Long CHANG You-Hong. Biological functions of HD-Zip transcription factors[J]. HEREDITAS, 2013, 35(10): 1179-1188.
[1] Nakashima K, Ito Y, Yamaguchi-Shinozaki K. Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol, 2009, 149(1): 88-95.<\p> [2] Sultan SE. Plant developmental responses to the environment: eco-devo insights. Curr Opin Plant Biol, 2010, 13(1): 96-101.<\p> [3] Ariel FD, Manavella PA, Dezar CA, Chan RL. The true story of the HD-Zip family. Trends Plant Sci, 2007, 12(9): 419-426.<\p> [4] Harris JC, Hrmova M, Lopato S, Langridge P. Modulation of plant growth by HD-Zip class I and II transcription factors in response to environmental stimuli. New Phytol, 2011, 190(4): 823-837.<\p> [5] Ré DA, Dezar CA, Chan RL, Baldwin IT, Bonaventure G. Nicotiana attenuata NaHD20 plays a role in leaf ABA accumulation during water stress, benzylacetone emission from flowers, and the timing of bolting and flower transitions. J Exp Bot, 2011, 62(1): 155-166.<\p> [6] Ariel F, Diet A, Verdenaud M, Gruber V, Frugier F, Chan R, Crespi M. Environmental regulation of lateral root emergence in Medicago truncatula requires the HD-Zip I transcription factor HB1. Plant Cell, 2010, 22(7): 2171- 2183.<\p> [7] Cabello JV, Dezar CA, Manavella PA, Chan RL. The intron of the Arabidopsis thaliana COX5c gene is able to improve the drought tolerance conferred by the sunflower Hahb-4 transcription factor. Planta, 2007, 226(5): 1143- 1154.<\p> [8] Dezar CA, Gago GM, González DH, Chan RL. Hahb-4, a sunflower homeobox-leucine zipper gene, is a developmental regulator and confers drought tolerance to Arabidopsis thaliana plants. Transgenic Res, 2005, 14(4): 429-440.<\p> [9] Sakakibara K, Nishiyama T, Kato M, Hasebe M. Isolation of homeodomain-leucine zipper genes from the moss Physcomitrella patens and the evolution of homeodomain- leucine zipper genes in land plants. Mol Biol Evol, 2001, 18(4): 491-502.<\p> [10] Lopato S, Bazanova N, Morran S, Milligan AS, Shirley N, Langridge P. Isolation of plant transcription factors using a modified yeast one-hybrid system. Plant Methods, 2006, 2(1): 3.<\p> [11] Henriksson E, Olsson AS, Johannesson H, Johansson H, Hanson J, Engstrom P, Soderman E. Homeodomain leucine zipper class I genes in Arabidopsis. Expression patterns and phylogenetic relationships. Plant Physiol, 2005, 139(1): 509-518.<\p> [12] Ciarbelli A, Ciolfi A, Salvucci S, Ruzza V, Possenti M, Carabelli M, Fruscalzo A, Sessa G, Morelli G, Ruberti I. The Arabidopsis Homeodomain-leucine Zipper II gene family: diversity and redundancy. Plant Mol Biol, 2008, 68(4-5): 465-478.<\p> [13] Prigge MJ, Otsuga D, Alonso JM, Ecker JR, Drews GN, Clark SE. Class III homeodomain-leucine zipper gene family members have overlapping, antagonistic, and distinct roles in Arabidopsis development. Plant Cell, 2005, 17(1): 61-76.<\p> [14] Nakamura M, Katsumata H, Abe M, Yabe N, Komeda Y, Yamamoto KT, Takahashi T. Characterization of the class IV homeodomain-Leucine Zipper gene family in Arabidopsis. Plant Physiol, 2006, 141(4): 1363-1375.<\p> [15] Agalou A, Purwantomo S, ?vern?s E, Johannesson H, Zhu XY, Estiati A, de Kam RJ, Engstrom P, Slamet-Loedin IH, Zhu Z, Wang M, Xiong LZ, Meijer AH, Ouwerkerk PBF. A genome-wide survey of HD-Zip genes in rice and analysis of drought-responsive family members. Plant Mol Biol, 2008, 66(1-2): 87-103.<\p> [16] Zhao Y, Zhou YQ, Jiang HY, Li XY, Gan DF, Peng XJ, Zhu SW, Cheng BJ. Systematic analysis of sequences and expression patterns of drought-responsive members of the HD-Zip gene family in maize. PLoS ONE, 2011, 6(12): e28488.<\p> [17] Hu RB, Chi XY, Chai GH, Kong YZ, He G, Wang XY, Shi DC, Zhang DY, Zhou GK. Genome-wide identification, evolutionary expansion, and expression profile of homeodomain-leucine zipper gene family in poplar (Populus trichocarpa). PLoS ONE, 2012, 7(2): e31149.<\p> [18] Green KA, Prigge MJ, Katzman RB, Clark SE. CORONA, a member of the class III homeodomain leucine zipper gene family in Arabidopsis, regulates stem cell specification and organogenesis. Plant Cell, 2005, 17(3): 691-704.<\p> [19] McConnell JR, Emery J, Eshed Y, Bao N, Bowman J, Barton MK. Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature, 2001, 411(6838): 709-713.<\p> [20] Emery JF, Floyd SK, Alvarez J, Eshed Y, Hawker NP, Izhaki A, Baum SF, Bowman JL. Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. Curr Biol, 2003, 13(20): 1768-1774.<\p> [21] Baima S, Possenti M, Matteucci A, Wisman E, Altamura MM, Ruberti I, Morelli G. The Arabidopsis ATHB-8 HD-zip protein acts as a differentiation-promoting transcription factor of the vascular meristems. Plant Physiol, 2001, 126(2): 643-655.<\p> [22] Lin Z, Hong Y, Yin M, Li C, Zhang K, Grierson D. A tomato HD-Zip homeobox protein, LeHB-1, plays an important role in floral organogenesis and ripening. Plant J, 2008, 55(2): 301-310.<\p> [23] Kim J, Jung JH, Reyes JL, Kim YS, Kim SY, Chung KS, Kim JA, Lee M, Lee Y, Narry Kim V, Chua NH, Park CM. microRNA-directed cleavage of ATHB15 mRNA regulates vascular development in Arabidopsis inflorescence stems. Plant J, 2005, 42(1): 84-94.<\p> [24] Du J, Miura E, Robischon M, Martinez C, Groover A. The Populus Class III HD ZIP Transcription Factor POPCORONA affects cell differentiation during secondary growth of woody stems. PLoS ONE, 2011, 6(2): e17458.<\p> [25] C?té CL, Boileau F, Roy V, Ouellet M, Levasseur C, Morency MJ, Cooke JE, Séguin A, MacKay JJ. Gene family structure, expression and functional analysis of HD-Zip III genes in angiosperm and gymnosperm forest trees. BMC Plant Biol, 2010, 10(1): 273.<\p> [26] Itoh J, Hibara K, Sato Y, Nagato Y. Developmental role and auxin responsiveness of Class III homeodomain leucine zipper gene family members in rice. Plant Physiol, 2008, 147(4): 1960-1975.<\p> [27] Ohashi-Ito K, Kubo M, Demura T, Fukuda H. Class III homeodomain leucine-zipper proteins regulate xylem cell differentiation. Plant Cell Physiol, 2005, 46(10): 1646- 1656.<\p> [28] Kim YS, Kim SG, Lee M, Lee I, Park HY, Seo PJ, Jung JH, Kwon EJ, Suh SW, Paek KH, Park CM. HD-ZIP III activity is modulated by competitive inhibitors via a feedback loop in Arabidopsis shoot apical meristem development. Plant Cell, 2008, 20(4): 920-933.<\p> [29] Ponting CP, Aravind L. START: a lipid-binding domain in StAR, HD-ZIP and signalling proteins. Trends Biochem Sci, 1999, 24(4): 130-132.<\p> [30] Mukherjee K, Burglin TR. MEKHLA, a novel domain with similarity to PAS domains, is fused to plant homeodomain-leucine zipper III proteins. Plant Physiol, 2006, 140(4): 1142-1150.<\p> [31] Crosson S, Moffat K. Photoexcited structure of a plant photoreceptor domain reveals a light-driven molecular switch. Plant Cell, 2002, 14(5): 1067-1075.<\p> [32] De Smet I, Zhang H, Inzé D, Beeckman T. A novel role for abscisic acid emerges from underground. Trends Plant Sci, 2006, 11(9): 434-439.<\p> [33] Magnani E, Barton MK. A per-ARNT-sim-like sensor domain uniquely regulates the activity of the homeodomain leucine zipper transcription factor REVOLUTA in Arabidopsis. Plant Cell, 2011, 23(2): 567-582.<\p> [34] Vernoud V, Laigle G, Rozier F, Meeley RB, Perez P, Rogowsky PM. The HD-ZIP IV transcription factor OCL4 is necessary for trichome patterning and anther development in maize. Plant J, 2009, 59(6): 883-894.<\p> [35] Javelle M, Klein-Cosson C, Vernoud V, Boltz V, Maher C, Timmermans M, Depege-Fargeix N, Rogowsky PM. Genome-wide characterization of the HD-ZIP IV transcription factor family in maize: preferential expression in the epidermis. Plant Physiol, 2011, 157(2): 790-803.<\p> [36] La Rota C, Chopard J, Das P, Paindavoine S, Rozier F, Farcot E, Godin C, Traas J, Monéger F. A data-driven integrative model of sepal primordium polarity in Arabidopsis. Plant Cell, 2011, 23(12): 4318-4333.<\p> [37] Dezar CA, Giacomelli JI, Manavella PA, Ré DA, Alves- Ferreira M, Baldwin IT, Bonaventure G, Chan RL. HAHB10, a sunflower HD-Zip II transcription factor, participates in the induction of flowering and in the control of phytohormone-mediated responses to biotic stress. J Exp Bot, 2011, 62(3): 1061-1076.<\p> [38] Depege-Fargeix N, Javelle M, Chambrier P, Frangne N, Gerentes D, Perez P, Rogowsky PM, Vernoud V. Functional characterization of the HD-ZIP IV transcription factor OCL1 from maize. J Exp Bot, 2011, 62(1): 293- 305.<\p> [39] Wei Q, Kuai BK, Hu P, Ding YL. Ectopic-overexpression of an HD-Zip IV transcription factor from Ammopiptanthus mongolicus (Leguminosae) promoted upward leaf curvature and non-dehiscent anthers in Arabidopsis thaliana. Plant Cell Tiss Org Cult, 2012, 110(2): 299-306.<\p> [40] Franklin KA, Quail PH. Phytochrome functions in Arabidopsis development. J Exp Bot, 2010, 61(1): 11-24.<\p> [41] Stamm P, Kumar PP. The phytohormone signal network regulating elongation growth during shade avoidance. J Exp Bot, 2010, 61(11): 2889-2903.<\p> [42] Lin CT, Shalitin D. Cryptochrome structure and signal transduction. Annu Rev Plant Biol, 2003, 54: 469-496.<\p> [43] Inoue S, Takemiya A, Shimazaki K. Phototropin signaling and stomatal opening as a model case. Curr Opin Plant Biol, 2010, 13(5): 587-593.<\p> [44] M?glich A, Yang XJ, Ayers RA, Moffat K. Structure and function of plant photoreceptors. Annu Rev Plant Biol, 2010, 61(1): 21-47.<\p> [45] Barrero JM, Millar AA, Griffiths J, Czechowski T, Scheible WR, Udvardi M, Reid JB, Ross JJ, Jacobsen JV, Gubler F. Gene expression profiling identifies two regulatory genes controlling dormancy and ABA sensitivity in Arabidopsis seeds. Plant J, 2010, 61(4): 611-622.<\p> [46] Aoyama T, Dong CH, Wu Y, Carabelli M, Sessa G, Ruberti I, Morelli G, Chua NH. Ectopic expression of the Arabidopsis transcriptional activator Athb-1 alters leaf cell fate in tobacco. Plant Cell, 1995, 7(11): 1773-1785.<\p> [47] Wang Y, Henriksson E, S?derman E, Henriksson KN, Sundberg E, Engstr?m P. The Arabidopsis homeobox gene, ATHB16, regulates leaf development and the sensitivity to photoperiod in Arabidopsis. Dev Biol, 2003, 264(1): 228- 239.<\p> [48] Carabelli M, Morelli G, Whitelam G, Ruberti I. Twilight- zone and canopy shade induction of the Athb-2 homeobox gene in green plants. Proc Natl Acad Sci USA, 1996, 93(8): 3530-3535.<\p> [49] Rueda EC, Dezar CA, Gonzalez DH, Chan RL. Hahb-10, a sunflower homeobox-leucine zipper gene, is regulated by light quality and quantity, and promotes early flowering when expressed in Arabidopsis. Plant Cell Physiol, 2005, 46(12): 1954-1963.<\p> [50] Steindler C, Carabelli M, Borello U, Morelli G, Ruberti I. Phytochrome A, phytochrome B and other phytochrome(s) regulate ATHB-2 gene expression in etiolated and green Arabidopsis plants. Plant Cell Environ, 1997, 20(6): 759- 763.<\p> [51] Sorin C, Salla-Martret M, Bou-Torrent J, Roig-Villanova I, Martínez-García JF. ATHB4, a regulator of shade avoidance, modulates hormone response in Arabidopsis seedlings. Plant J, 2009, 59(2): 266-277.<\p> [52] Zhang SX, Haider I, Kohlen W, Jiang L, Bouwmeester H, Meijer AH, Schluepmann H, Liu CM, Ouwerkerk PBF. Function of the HD-Zip I gene Oshox22 in ABA-mediated drought and salt tolerances in rice. Plant Mol Biol, 2012, 80(6): 571-585.<\p> [53] Brinker M, Brosche M, Vinocur B, Abo-Ogiala A, Fayyaz P, Janz D, Ottow EA, Cullmann AD, Saborowski J, Kangasjarvi J, Altman A, Polle A. Linking the salt transcriptome with physiological responses of a salt-resistant Populus species as a strategy to identify genes important for stress acclimation. Plant Physiol, 2010, 154(4): 1697- 1709.<\p> [54] Manavella PA, Dezar CA, Bonaventure G, Baldwin IT, Chan RL. HAHB4, a sunflower HD-Zip protein, integrates signals from the jasmonic acid and ethylene pathways during wounding and biotic stress responses. Plant J, 2008, 56(3): 376-388.<\p> [55] Manavella PA, Arce AL, Dezar CA, Bitton F, Renou JP, Crespi M, Chan RL. Cross-talk between ethylene and drought signalling pathways is mediated by the sunflower Hahb-4 transcription factor. Plant J, 2006, 48(1): 125- 137.<\p> [56] Soderman E, Hjellstrom M, Fahleson J, Engstrom P. The HD-Zip gene ATHB6 in Arabidopsis is expressed in developing leaves, roots and carpels and up-regulated by water deficit conditions. Plant Mol Biol, 1999, 40(6): 1073-1083.<\p> [57] Himmelbach A, Hoffmann T, Leube M, H?hener B, Grill E. Homeodomain protein ATHB6 is a target of the protein phosphatase ABI1 and regulates hormone responses in Arabidopsis. EMBO J, 2002, 21(12): 3029-3038.<\p> [58] Leung J, Merlot S, Giraudat J. The Arabidopsis ABSCISIC ACID-INSENSITIVE2 (ABI2) and ABI1 genes encode homologous protein phosphatases 2C involved in abscisic acid signal transduction. Plant Cell, 1997, 9(5): 759-771.<\p> [59] Johannesson H, Wang Y, Hanson J, Engstr?m P. The Arabidopsis thaliana homeobox gene ATHB5 is a potential regulator of abscisic acid responsiveness in developing seedlings. Plant Mol Biol, 2003, 51(5): 719-729.<\p> [60] Olsson AS, Engstr?m P, S?derman E. The homeobox genes ATHB12 and ATHB7 encode potential regulators of growth in response to water deficit in Arabidopsis. Plant Mol Biol, 2004, 55(5): 663-677.<\p> [61] Cabello JV, Arce AL, Chan RL. The homologous HD-Zip I transcription factors HaHB1 and AtHB13 confer cold tolerance via the induction of pathogenesis-related and glucanase proteins. Plant J, 2012, 69(1): 141-153.<\p> [62] Skirycz A, Vandenbroucke K, Clauw P, Maleux K, De Meyer B, Dhondt S, Pucci A, Gonzalez N, Hoeberichts F, Tognetti VB, Galbiati M, Tonelli C, Van Breusegem F, Vuylsteke M, Inze D. Survival and growth of Arabidopsis plants given limited water are not equal. Nat Biotechnol, 2011, 29(3): 212-214.<\p> [63] Yamaguchi-Shinozaki K, Shinozaki K. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol, 2006, 57(1): 781-803.<\p> [64] Deng X, Phillips J, Br?utigam A, Engstr?m P, Johannesson H, Ouwerkerk PB, Ruberti I, Salinas J, Vera P, Iannacone R, Meijer AH, Bartels D. A homeodomain leucine zipper gene from Craterostigma plantagineum regulates abscisic acid responsive gene expression and physiological responses. Plant Mol Biol, 2006, 61(3): 469-489.<\p> [65] Shan H, Chen SM, Jiang JF, Chen FD, Chen Y, Gu CS, Li PL, Song AP, Zhu XR, Gao HS, Zhou GQ, Li T, Yang X. Heterologous expression of the chrysanthemum R2R3-MYB transcription factor CmMYB2 enhances drought and salinity tolerance, increases hypersensitivity to ABA and delays flowering in Arabidopsis thaliana. Mol Biotechnol, 2012, 51(2): 160-173.<\p> [66] Brady SM, Sarkar SF, Bonetta D, McCourt P. The ABSCISIC ACID INSENSITIVE 3 (ABI3) gene is modulated by farnesylation and is involved in auxin signaling and lateral root development in Arabidopsis. Plant J, 2003, 34(1): 67-75.<\p> [67] Son O, Hur YS, Kim YK, Lee HJ, Kim S, Kim MR, Nam KH, Lee MS, Kim BY, Park J, Park J, Lee SC, Hanada A, Yamaguchi S, Lee IJ, Kim SK, Yun DJ, Soderman E, Cheon CI. ATHB12, an ABA-inducible homeodomain- leucine zipper (HD-Zip) protein of Arabidopsis, negatively regulates the growth of the inflorescence stem by decreasing the expression of a gibberellin 20-oxidase gene. Plant Cell Physiol, 2010, 51(9): 1537-1547.<\p> [68] De Smet I, Signora L, Beeckman T, Inzé D, Foyer CH, Zhang H. An abscisic acid-sensitive checkpoint in lateral root development of Arabidopsis. Plant J, 2003, 33(3): 543-555.<\p> [69] Valdés AE, ?vern?s E, Johansson H, Rada-Iglesias A, Engstr?m P. The homeodomain-leucine zipper (HD-Zip) class I transcription factors ATHB7 and ATHB12 modulate abscisic acid signalling by regulating protein phosphatase 2C and abscisic acid receptor gene activities. Plant Mol Biol, 2012, 80(4-5): 405-418.<\p> [70] Lechner E, Leonhardt N, Eisler H, Parmentier Y, Alioua M, Jacquet H, Leung J, Genschik P. MATH/BTB CRL3 receptors target the homeodomain-leucine zipper ATHB6 to modulate abscisic acid signaling. Dev Cell, 2011, 21(6): 1116-1128.<\p> |
[1] | 禹奇超,宋彬,邹轩轩,王岭,刘德权,李波,马昆. 乳腺癌癌旁组织特异性表达基因分析[J]. 遗传, 2019, 41(7): 625-633. |
[2] | 石田培,张莉. 全转录组学在畜牧业中的应用[J]. 遗传, 2019, 41(3): 193-205. |
[3] | 宁椿游,何梦楠,唐茜子,朱庆,李明洲,李地艳. 基于Hi-C技术哺乳动物三维基因组研究进展[J]. 遗传, 2019, 41(3): 215-233. |
[4] | 王玉杰, 周小坤, 徐丹. 常染色体隐性遗传小头畸形相关蛋白研究进展[J]. 遗传, 2019, 41(10): 905-918. |
[5] | 丁庆倩,王小婷,胡利琴,齐欣,葛林豪,徐伟亚,徐兆师,周永斌,贾冠清,刁现民,闵东红,马有志,陈明. 谷子MYB类转录因子SiMYB42提高转基因拟南芥低氮胁迫耐性[J]. 遗传, 2018, 40(4): 327-338. |
[6] | 李迎侠, 张婷婷, 马磊. 天然嵌合基因的结构特性及其对基因设计的启示[J]. 遗传, 2018, 40(2): 135-144. |
[7] | 徐宗昌,孔英珍. 普通烟草CESA基因家族成员的鉴定、亚细胞定位及表达分析[J]. 遗传, 2017, 39(6): 512-524. |
[8] | 施剑,李艳明,方向东. 长链非编码RNA通过细胞核高级结构调控真核基因表达及其临床意义[J]. 遗传, 2017, 39(3): 189-199. |
[9] | 魏凯,马磊. 高通量测序时代下持家基因定义的发展[J]. 遗传, 2017, 39(2): 127-134. |
[10] | 许璟瑾, 张文娟, 王静怡, 姚丽云, 潘裕添, 欧一新, 薛钰, . 金线莲抑制斑马鱼黑色素形成的活性组分筛选及机理研究[J]. 遗传, 2017, 39(12): 1178-1187. |
[11] | 路畅, 黄银花. 动物长链非编码RNA研究进展[J]. 遗传, 2017, 39(11): 1054-1065. |
[12] | 崔婷婷, 邢天宇, 褚衍凯, 李辉, 王宁. PPARγ在脂肪生成中的遗传和表观遗传调控[J]. 遗传, 2017, 39(11): 1066-1077. |
[13] | 向小华, 吴新儒, 晁江涛, 杨明磊, 杨帆, 陈果, 刘贯山, 王元英. 普通烟草WRKY基因家族的鉴定及表达分析[J]. 遗传, 2016, 38(9): 840-856. |
[14] | 翟亚男, 许泉, 郭亚, 吴强. 原钙粘蛋白基因簇调控区域中成簇的CTCF结合位点分析[J]. 遗传, 2016, 38(4): 323-336. |
[15] | 刘娟, 孙艳, 姜强, 杨春红, 黄金明, 李建斌, 侯明海, 仲跻峰, 王长法, 刘保申. INCENP基因功能性单倍型可调控启动子活性并影响公牛精液品质[J]. 遗传, 2016, 38(1): 62-71. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: