遗传 ›› 2013, Vol. 35 ›› Issue (10): 1167-1178.doi: 10.3724/SP.J.1005.2013.01167
李雄伟, 贾惠娟, 高中山
收稿日期:
2013-04-12
修回日期:
2013-08-01
出版日期:
2013-10-20
发布日期:
2013-10-25
通讯作者:
高中山, 教授, 研究方向:果树遗传育种。
E-mail:gaozhongshan@zju.edu.cn
作者简介:
李雄伟, 在读博士, 研究方向:果树遗传育种。E-mail: lixiongweisea@live.cn
基金资助:
国家高技术研究发展计划项目(“863计划”)(编号:2011AA100206), 科技部国际合作项目(编号:1114)和浙江省高校重大科技攻关项目(编号:ZD2009007)资助
LI Xiong-Wei, JIA Hui-Juan, GAO Zhong-Shan
Received:
2013-04-12
Revised:
2013-08-01
Online:
2013-10-20
Published:
2013-10-25
摘要:
桃(Prunus persica [L.] Batsch)是蔷薇科重要的核果类果树, 适应性强, 栽培范围广, 果实口感好, 深受消费者喜欢。提高桃果实品质及增加抗病、抗虫性一直是桃遗传育种者关注的焦点。文章对近年来桃遗传分子标记连锁图谱和物理图谱构建、分子标记开发应用、全基因组和转录组测序工作中所取得的最新成果进行综述, 同时阐述了高密度SNP芯片标记技术在桃以及其它作物上所开展的全基因组关联分析应用实例, 为桃进一步开展全基因组关联分析, 挖掘目标性状QTLs以及高效育种选择标记提供理论基础
李雄伟 贾惠娟 高中山. 桃基因组及全基因组关/联分析研究进展[J]. 遗传, 2013, 35(10): 1167-1178.
LI Xiong-Wei JIA Hui-Juan GAO Zhong-Shan. Peach genomics and genome-wide association study: a review[J]. HEREDITAS, 2013, 35(10): 1167-1178.
[1] 汪祖华, 庄恩及. 中国果树志-桃卷. 北京: 中国林业出版社, 2001.<\p> [2] Arús P, Verde I, Sosinski B, Zhebentyayeva T, Abbott AG. The peach genome. Tree Genet Genomes, 2012, 8(3): 531-547.<\p> [3] Atwell S, Huang YS, Vilhjálmsson BJ, Willems G, Horton M, Li Y, Meng DZ, Platt A, Tarone AM, Hu TT, Jiang R, Muliyati NW, Zhang X, Amer MA, Baxter I, Brachi B, Chory J, Dean C, Debieu M, De Meaux J, Ecker JR, Faure N, Kniskern JM, Jones JDG, Michael T, Nemri A, Roux F, Salt DE, Tang CL, Todesco M, Traw MB, Weigel D, Mar-joram P, Borevitz JO, Bergelson J, Nordborg M. Ge-nome-wide association study of 107 phenotypes in Arabi-dopsis thaliana inbred lines. Nature, 2010, 465(7298): 627–631.<\p> [4] Huang XH, Wei XH, Sang T, Zhao Q, Feng Q, Zhao Y, Li CY, Zhu CR, Lu TT, Zhang ZW, Li M, Fan DL, Guo YL, Wang AH, Wang L, Deng LW, Li WJ, Lu YQ, Weng QJ, Liu KY, Huang T, Zhou TY, Jing YF, Li W, Lin Z, Buckler ES, Qian Q, Zhang QF, Li JY, Han B. Genome-wide asso-ciation studies of 14 agronomic traits in rice landraces. Nat Genet, 2010, 42(11): 691–697.<\p> [5] Tian F, Bradbury PJ, Brown PJ, Hung H, Sun Q, Flint-Garcia S, Rocheford TR, MuMullen MD, Holland JB, Buckler ES. Genome-wide association study of leaf archi-tecture in the maize nested association mapping popula-tion. Nat Genet, 2011, 43(2): 159–162.<\p> [6] Aranzana MJ, Abbassi EK, Howad W, Arús P. Genetic variation, population structure and linkage disequilibrium in peach commercial varieties. BMC Genet, 2010, 11(1): 69.<\p> [7] Cao K, Wang LR, Zhu GR, Fang WC, Chen CW, Luo J. Genetic diversity, linkage disequilibrium, and association mapping analyses of peach (Prunus persica) landraces in China. Tree Genet Genomes, 2012, 8(5): 975–990.<\p> [8] Eduardo I, Chietera G, Pirona R, Pacheco I, Troggio M, Banchi E, Bassi D, Rossini L, Vecchietti A, Pozzi C. Ge-netic dissection of aroma volatile compounds from the es-sential oil of peach fruit: QTL analysis and identification of candidate genes using dense SNP maps. Tree Genet Genomes, 2013, 9(1): 189–204.<\p> [9] Martínez-García PJ, Parfitt DE, Ogundiwin EA, Fass J, Chan HM, Ahmad R, Lurie S, Dandekar A, Gradzil TM, Crisosto CH. High density SNP mapping and QTL analy-sis for fruit quality characteristics in peach (Prunus per-sica L.). Tree Genet Genomes, 2013, 9(1): 19–36.<\p> [10] Chaparro JX, Werner DJ, O'malley D, Sederoff RR. Tar-geted mapping and linkage analysis of morphological isozyme, and RAPD markers in peach. Theor Appl Genet, 1994, 87(7): 805–815.<\p> [11] Rajapakse S, Bethoff LE, He G, Estager AE, Scorza R, Verde I, Ballard RE, Baird WV, Callahan A, Monet R, Abbott AG. Genetic linkage mapping in peach using mor-phological, RFLP and RAPD markers. Theor Appl Genet, 1995, 90(3-4): 503–510.<\p> [12] Blenda AV, Verde I, Georgi LL, Reighard GL, Forrest SD, Muñoz-Torres M, Baird WV, Abbott AG. Construction of a genetic linkage map and identification of molecular mark-ers in peach rootstocks for response to peach tree short life syndrome. Tree Genet Genomes, 2007, 3(4): 341–350.<\p> [13] Dirlewanger E, Pronier V, Parvery C, Rothan C, Guye A, Monet R. Genetic linkage map of peach[Prunus persica (L.) Batsch] using morphological and molecular markers. Theor Appl Genet, 1998, 97(5–6): 888–895.<\p> [14] Lu ZX, Sosinski B, Reighard GL, Baird WV, Abbott AG, Lu ZX. Construction of a genetic linkage map and identi-fication of AFLP markers for resistance to root-knot nematodes in peach rootstocks. Genome, 1998, 41(2): 199–207.<\p> [15] Yamamoto T, Shimada T, Imai T, Yaegaki H, Haji T, Ma-tsuta N, Yamaguchi M, Hayashi T. Characterization of morphological traits based on a genetic linkage map in peach. Breed Sci, 2001, 51(4): 271–278.<\p> [16] 吴俊, 束怀瑞, 张开春, 姜立杰, 周晓航, 辛翠花. 桃分子连锁图的构建与分析. 园艺学报, 2004, 31(5): 593-597.<\p> [17] Yamamoto Y, Yamaguchi M, Hayashi T. An integrated ge-netic linkage map of peach by SSR, STS, AFLP and RAPD. J Jpn Soc Hortic Sci, 2005, 74(3): 204–213.<\p> [18] Dirlewanger E, Cosson P, Boudehri K, Renaud C, Cap-deville G, Tauzin, Y, Laigret F, Moing A. Development of a second-generation genetic linkage map for peach[Prunus persica (L.) Batsch] and characterization of mor-phological traits affecting flower and fruit. Tree Genet Genomes, 2006, 3(1): 1–13.<\p> [19] Ogundiwin EA, Peace CP, Gradziel TM, Parfitt DE, Bliss FA, Crisosto CH. A fruit quality gene map of Prunus. BMC Genomics, 2009, 10(1): 587.<\p> [20] Joobeur T, Viruel MA, De Vicente MC, Jáuregui B, Ball-ester J, Dettori MT, Verde I, Truco MJ, Messeguer R, Batlle I, Quarta R, Dirlewanger E, Arús P. Construction of a saturated linkage map for Prunus using an almond× peach F2 progeny. Theor Appl Genet, 1998, 97(7): 1034-1041.<\p> [21] Foolad MR, Arulsekar S, Becerra V, Bliss, FA. A genetic map of Prunus based on an interspecific cross between peach and almond. Theor Appl Genet, 1995, 91(2): 262-269.<\p> [22] Bliss FA, Arulsekar S, Foolad MR, Becerra V, Gillen AM, Warburton ML, Dandekar AM, Kocsisne GM, Mydin KK. An expanded genetic linkage map of Prunus based on an interspecific cross between almond and peach. Genome, 2002, 45(3): 520–529.<\p> [23] Quarta R, Dettori MT, Verde I, Gentile A, Broda Z. Ge-netic analysis of agronomic traits and genetic linkage mapping in a BC1 peach population using RFLPs and RAPDs. In IV International Peach Symposium, 1997, 465: 51–60.<\p> [24] Dettori MT, Quarta R, Verde I. A peach linkage map inte-grating RFLPs, SSRs, RAPDs, and morphological markers. Genome, 2001, 44(5): 783–790.<\p> [25] Jáuregui B, De Vicente MC, Messeguer R, Felipe A, Bon-net A, Salesses G, Arús P. A reciprocal translocation be-tween ‘Garfi’ almond and ‘Nemared’ peach. Tree Genet Genomes, 2001, 102(8): 1169–1176.<\p> [26] Foulongne M, Pascal T, Pfeiffer F, Kervella J. QTLs for powdery mildew resistance in peach× Prunus davidiana crosses: consistency across generations and environments. Mol Breed, 2003, 12(1): 33–50.<\p> [27] 曹珂, 王力荣, 朱更瑞, 方伟超, 陈昌文. 桃遗传图谱的构建及两个花性状的分子标记. 园艺学报, 2009, 36(2): 179–186.<\p> [28] Cao K, Wang LR, Zhu GR, Fang WC, Chen CW, Zhao P. Construction of a linkage map and identification of resis-tance gene analog markers for root-knot nematodes in wild peach, Prunus kansuensis. J Am Soc Hortic Sci, 2011, 136(3): 190–197.<\p> [29] Georgi LL, Wang Y, Yverggniaux D, Ormsbee T, Iñigo M, Reighard GL, Abbott AG. Construction of a BAC library and its application to the identification of simple sequence repeats in peach[Prunus persica (L.) Batsch]. Theor Appl Genet, 2002, 105(8): 1151–1158.<\p> [30] Wang Q, Zhang K, Qu X, Jia J, Shi J, Jin D, Wang B. Construction and characterization of a bacterial artificial chromosome library of peach. Theor Appl Genet, 2001, 108(4): 1174–1179.<\p> [31] Zhebentyayeva TN, Swire-Clark G, Georgi LL, Garay L, Jung S, Forrest S, Blenda AV, Blackmon B, Mook J, Horn R, Howad W, Arús P, Main D, Tomkins JP, Sosinski B, Baird WV, Reighard GL, Abbott AG. A framework physi-cal map for peach, a model Rosaceae species. Tree Genet Genomes, 2008, 4(4): 745–756.<\p> [32] Peace CP, Crisosto CH, Gradziel TM. Endopolygalactu-ronase: a candidate gene for freestone and melting flesh in peach. Mol Breed, 2005, 16(1): 21–31.<\p> [33] Dirlewanger E, Graziano E, Joobeur T, Garriga-Calderé F, Cosson P, Howad W, Arús P. Comparative mapping and marker-assisted selection in Rosaceae fruit crops. Proc Natl Acad Sci USA, 2004, 101(26): 9891–9896.<\p> [34] Chen L, Zhang SM, Illa E, Song LJ, Wu SD, Howad W, Arús P, van de Weg E, Chen KS, Gao ZS. Genomic char-acterization of putative allergen genes in peach/almond and their synteny with apple. BMC Genomics, 2008, 17(9): 543.<\p> [35] Illa E, Eduardo I, Audergon JM, Barale F, Dirlewanger E, Li XW, Moing A, Lambert P, Le Dantec L, Gao ZS, Poëssel JL, Pozzi C, Rossini L, Vecchietti A, Arús P, Howad W. Saturating the Prunus (stone fruits) genome with candidate genes for fruit quality. Mol Breed, 2011, 28(4): 667–682.<\p> [36] Kalia RK, Rai MK, Kalia S, Singh R, Dhawa AK. Mi-crosatellite markers: an overview of the recent progress in plants. Euphytica, 2011, 177(3): 309–334.<\p> [37] Aranzana MJ, Pineda A, Cosson P, Dirlewanger E, As-casibar J, Cipriani G, Ryder CD, Testolin R, Abbott A, King GJ, Iezzoni AF, Arus P. A set of simple-sequence re-peat (SSR) markers covering the Prunus genome. Theor Appl Genet, 2003, 106(5): 819–825.<\p> [38] Rojas G, Méndez MA, Muñoz C, Lemus G, Hinrichsen P. Identification of a minimal microsatellite marker panel for the fingerprinting of peach and nectarine cultivars. Elec-tron J Biotechn, 2008, 11(5): 1–12.<\p> [39] Bouhadida M, Moreno MÁ, Gonzalo MJ, Alonso JM, Gogorcena Y. Genetic variability of introduced and local Spanish peach cultivars determined by SSR markers. Tree Genet Genomes, 2010, 7(2): 257–270.<\p> [40] Li TH, Li YX, Li ZC, Zhang HL, Qi YW, Wang T. Simple sequence repeat analysis of genetic diversity in primary core collection of peach (Prunus persica). J Integr Plant Biol, 2008, 50(1): 102–110.<\p> [41] Xie RJ, Li XW, Chai ML, Song LJ, Jia HJ, Wu DJ, Chen MJ, Chen KM, Aranzana MJ, Gao ZS. Evaluation of the genetic diversity of Asian peach accessions using a se-lected set of SSR markers. Sci Hortic, 2010, 125(4): 622-629.<\p> [42] Aranzana MJ, Illa E, Howad W, Arús P. A first insight into peach[Prunus persica (L.) Batsch] SNP variability. Tree Genet Genomes, 2012, 8(6): 1359–1369.<\p> [43] Verde I, Bassil N, Scalabrin S, Gilmore B, Lawley CT, Gasic K, Micheletti D, Rosyara UR, Cattonaro F, Ven-dramin E, Main D, Aramini V, Blas AL, Mockler TC, Bryant DW, Wilhelm L, Troggio M, Sosinski B, Aranzana MJ, Arús P, Lezzoni A, Morgante M, Peace C. Develop-ment and evaluation of a 9K SNP array for peach by in-ternationally coordinated SNP detection and validation in breeding germplasm. PLoS ONE, 2012, 7(4): E35668.<\p> [44] Ahmad R, Parfitt DE, Fass J, Ogundiwin E, Dhingra A, Gradziel TM, Lin DW, Joshi NA, Martinez-Garcia PJ, Crisost CH. Whole genome sequencing of peach (Prunus persica L.) for SNP identification and selection. BMC Genomics, 2011, 12(1): 569.<\p> [45] 祁云霞, 刘永斌, 荣威恒. 转录组研究新技术: RNA- Seq及其应用. 遗传, 2011, 33(11): 1191–1202.<\p> [46] Lazzari B, Caprera A, Vecchietti A, Merelli I, Barale F, Milanesi L, Stella A, Pozzi C. Version VI of the ESTree db: an improved tool for peach transcriptome analysis. BMC Bioinformatics, 2008, 9(S2): S9.<\p> [47] Vizoso P, Meisel LA, Tittarelli A, Latorre M, Saba J, Ca-roca R, Maldonado J, Cambiazo V, Campos-Vargas R, González M, Orellana A, Silva H. Comparative EST tran-script profiling of peach fruits under different post-harvest conditions reveals candidate genes associated with peach fruit quality. BMC Genomics, 2009, 10(1): 423.<\p> [48] Vecchietti A, Lazzari B, Ortugno C, Bianchi F, Malinverdi R, Caprera A, Mignani I, Pozzi C. Comparative analysis of expressed sequence tags from tissues in ripening stages of peach (Prunus persica L. Batsch). Tree Genet Genomes, 2009, 5(3): 377–391.<\p> [49] Ogundiwin EA, Martí C, Forment J, Pons C, Granell A, Gradziel TM, Peace CP, Crisosto CH. Development of ChillPeach genomic tools and identification of cold- responsive genes in peach fruit. Plant Mol Biol, 2008, 68(4-5): 379–397.<\p> [50] Leida C, Terol J, Martí G, Agustí M, Llácer G, Badenes ML, Ríos G. Identification of genes associated with bud dormancy release in Prunus persica by suppression sub-tractive hybridization. Tree Physiol, 2010, 30(5): 655–666.<\p> [51] Leida C, Conesa A, Llácer G, Badenes ML, Ríos G. His-tone modifications and expression of DAM6 gene in peach are modulated during bud dormancy release in a culti-var-dependent manner. New Phytol, 2012, 193(1): 67–80.<\p> [52] Trainotti L, Bonghi C, Ziliotto F, Zanin D, Rasori A, Casadoro G, Ramina A, Tonutti P. The use of microarray μPEACH1. 0 to investigate transcriptome changes during transition from pre-climacteric to climacteric phase in peach fruit. Plant Sci, 2006, 170(3): 606–613.<\p> [53] Pirona R, Vecchietti A, Lazzari B, Caprera A, Malinverni R, Consolandi C, Severgnini M, de Bellis G, Chietera G, Rossini L, Pozzi C. Expression profiling of genes involved in the formation of aroma in two peach genotypes. Plant Biol, 2012, 15(3): 443–451.<\p> [54] Ziliotto F, Begheldo M, Rasori A, Bonghi C, Tonutti P. Transcriptome profiling of ripening nectarine (Prunus persica L. Batsch) fruit treated with 1-MCP. J Exp Bot, 2008, 59(10): 2781–2791.<\p> [55] Ziosi V, Bonghi C, Bregoli AM, Trainotti L, Biondi S, Sutthiwal S, Kondo S, Costa G, Torrigiani P. Jasmonate- induced transcriptional changes suggest a negative inter-ference with the ripening syndrome in peach fruit. J Exp Bot, 2008, 59(3): 563–573.<\p> [56] Xi WP, Zhang B, Liang L, Shen JY, Wei WW, Xu CJ, Allan AC, Ferguson IB, Chen KS. Postharvest temperature influences volatile lactone production via regulation of acyl-CoA oxidases in peach fruit. Plant Cell Environ, 2012, 35(3): 534–545.<\p> [57] The International Peach Genome Initiative, Verde I, Ab-bott AG, Scalabrin S, Jung S, Shu SQ, Marroni F, Zhe-bentyayeva T, Dettori MT, Grimwood J, Cattonaro F, Zuccolo A, Rossini L, Jenkins J, Vendramin E, Meisel LA, Decroocq V, Sosinski B, Prochnik S, Mitros T, Policriti A, Cipriani G, Dondini L, Ficklin S, Goodstein DM, Xuan PF, Fabbro CD, Aramini V, Copetti D, Gonzalez S, Horner DS, Falchi R, Lucas S, Mica E, Maldonado J, Lazzari B, Bielenberg D, Pirona R, Miculan M, Barakat A, Testolin R, Stella A, Tartarini S, Tonutti P, Arús P, Orellana A, Wells C, Main D, Vizzotto G, Silva H, Salamini F, Schmutz J, Morgante M, Rokhsar DS. The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nat Genet, 2013, 45(5): 487–494.<\p> [58] Wang L, Zhao S, Gu C, Zhou Y, Zhou H, Ma JJ, Cheng J, Hang YP. Deep RNA-Seq uncovers the peach transcrip-tome landscape. Plant Mol Biol, 2013: 1–13.<\p> [59] Zhou Y, Guo D, Li J, Cheng J, Zhou H, Gu C, Gardiner S, Han YP. Coordinated regulation of anthocyanin biosyn-thesis through photorespiration and temperature in peach (Prunus persica f. atropurpurea). Tree Genet Genomes, 2013, 9(1): 265–278.<\p> [60] Jung S, Cestaro A, Troggio M, Main D, Zheng P, Cho I, Folta KM, Sosinski B, Abbott A, Celton JM, Arús P, Shu-laev V, Verde I, Morgante M, Rokhsar D, Velasco R, Sargent DJ. Whole genome comparisons of Fragaria, Prunus and Malus reveal different modes of evolution between Rosaceous subfamilies. BMC Genomics, 2012, 13(1): 129.<\p> [61] Hirschhorn JN, Daly MJ. Genome-wide association stud-ies for common diseases and complex traits. Nat Rev Genet, 2005, 6(2): 95–108.<\p> [62] 韩建文, 张学军. 全基因组关联研究现状. 遗传, 2011, 33(1): 25–35.<\p> [63] 马昭君, 易洪刚, 赵杨, 陈峰. 全基因组关联研究中的二阶段病例对照设计. 中华流行病学杂志, 2010, 31(10): 1184–1187.<\p> [64] Hansen M, Kraft T, Ganestam S, Säll T, Nilsson NO. Linkage disequilibrium mapping of the bolting gene in sea beet using AFLP markers. Genet Res, 2001, 77(1): 61–66.<\p> [65] Aranzana MJ, Kim S, Zhao KY, Bakker E, Horton M, Lister C, Molitor J, Shindo C, Tang CL, Toomajian C, Traw B, Zheng HG, Bergelson J, Dean C, Marjoram P, Nordborg M. Genome-wide association mapping in Arabidopsis identifies previously known flowering time and pathogen resistance genes. PLoS Genet, 2005, 1(5): e60.<\p> [66] Zhao KY, Aranzana MJ, Kim S, Lister C, Shindo C, Tang CL, Toomajian C, Zheng HG, Dean C, Marjoram P, Nord-borg M. An Arabidopsis example of association mapping in structured samples. PLoS Genet, 2007, 3(1): e4.<\p> [67] Huang XH, Zhao Y, Wei XH, Li CY, Wang AH, Zhao Q, Li WJ, Guo YL, Deng LW, Zhu CR, Fan DL, Lu YQ, Weng QJ, Liu KY, Zhou TY, Jing YF, Si LZ, Dong GJ, Huang T, Lu TT, Feng Q, Qian Q, Li JY, Han B. Ge-nome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nat Genet, 2011, 44(1): 32–39.<\p> [68] Weng JF, Xie CX, Hao ZF, Wang JJ, Liu CL, Li MS, Zhang DG, Bai L, Zhang SH, Li XH. Genome-wide asso-ciation study identifies candidate genes that affect plant height in Chinese elite maize (Zea mays L.) inbred lines. PloS ONE, 2011, 6(12): e29229.<\p> [69] Li H, Peng ZY, Yang XH, Wang WD, Fu JJ, Wang JH, Han YJ, Chai YC, Guo TT, Yang N, Liu J, Warbruton ML, Cheng YB, Hao XM, Zhang P, Zhao JY, Liu YJ, Wang GY, Li JS, Yan JB. Genome-wide association study dis-sects the genetic architecture of oil biosynthesis in maize kernels. Nat Genet, 2013, 45(1): 43–50.<\p> [70] Pasam RK, Sharma R, Malosetti M, van Eeuwijk FA, Ha-seneyer G, Kilian B, Graner A. Genome-wide association studies for agronomical traits in a world wide spring bar-ley collection. BMC Plant Biol, 2012, 12(1): 16.<\p> [71] Lombardo VA, Osorio S, Borsani J, Lauxmann MA, Bustamante CA, Budde CO, Andreo CS, Lara MV, Fernie AR, Drincovic MF. Metabolic profiling during peach fruit development and ripening reveals the metabolic networks that underpin each developmental stage. Plant Physiol, 2011, 157(4): 1696–1710.<\p> [72] Ghiani A, Onelli E, Aina R, Cocucci M, Citterio S. A comparative study of melting and non-melting flesh peach cultivars reveals that during fruit ripening endo-polygalacturonase (endo-PG) is mainly involved in pericarp textural changes, not in firmness reduction. J Exp Bot, 2011, 62(11): 4043–4054.<\p> |
[1] | 梁承志. 从作物基因组分析到整合组学知识库建设[J]. 遗传, 2019, 41(9): 875-882. |
[2] | 刘永鑫,秦媛,郭晓璇,白洋. 微生物组数据分析方法与应用[J]. 遗传, 2019, 41(9): 845-862. |
[3] | 史晓黎,何伊琳,凌宏清. 小麦A基因组测序与进化研究进展[J]. 遗传, 2019, 41(9): 836-844. |
[4] | 张秀泉,王建,熊符,吕伟标,周远青,杨少民,张玉婷,田小燕,连蔚,徐湘民. 染色体10q24.31片段重复导致先天性缺指/缺趾畸形的一个家系致病机理分析[J]. 遗传, 2019, 41(8): 716-724. |
[5] | 梁文权,侯豫,赵存友. 精神分裂症相关单核苷酸多态性调控microRNA功能研究进展[J]. 遗传, 2019, 41(8): 677-685. |
[6] | 何俊,Fernando B. Lopes,吴晓林. 动物基因组选配方法与应用[J]. 遗传, 2019, 41(6): 486-493. |
[7] | 王珏, 黄娟, 许蕊. 利用CRISPR/Cas9和piggyBac实现果蝇基因组无缝编辑[J]. 遗传, 2019, 41(5): 422-429. |
[8] | 刘刚,孙飞舟,朱芳贤,冯海永,韩旭. 连续性纯合片段在畜禽基因组研究中的应用[J]. 遗传, 2019, 41(4): 304-317. |
[9] | 赵志达,张莉. 基因组选择在绵羊育种中的应用[J]. 遗传, 2019, 41(4): 293-303. |
[10] | 宁椿游,何梦楠,唐茜子,朱庆,李明洲,李地艳. 基于Hi-C技术哺乳动物三维基因组研究进展[J]. 遗传, 2019, 41(3): 215-233. |
[11] | 匡卫民, 于黎. 基因组时代线粒体基因组拼装策略及软件应用现状[J]. 遗传, 2019, 41(11): 979-993. |
[12] | 王凤红,张磊,李晓凯,范一星,乔贤,龚高,严晓春,张令天,王志英,王瑞军,刘志红,王志新,何利兵,张燕军,李金泉,赵艳红,苏蕊. 山羊基因组研究进展[J]. 遗传, 2019, 41(10): 928-938. |
[13] | 姚雅馨,喇永富,狄冉,刘秋月,胡文萍,王翔宇,储明星. 不同单细胞全基因组扩增方法的比较及MALBAC在辅助生殖中的应用[J]. 遗传, 2018, 40(8): 620-631. |
[14] | 邓雯文,龙梅,杨盛智,邹立扣. β-内酰胺酶耐药基因blaOKP进化及其侧翼序列特征研究[J]. 遗传, 2018, 40(7): 585-592. |
[15] | 梁彩娇, 孟繁梅, 艾云灿. 基于CRISPR/Cas系统的噬菌体基因组编辑[J]. 遗传, 2018, 40(5): 378-389. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: