[1] Owen M, Friedenstein AJ. Stromal stem cells: marrow- derived osteogenic precursors. Ciba Found Symp, 1988, 136(1): 42–60.<\p>
[2] Caplan A, Bruder SP. Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends Mol Med, 2001, 7(6): 259–264.<\p>
[3] Chen Y, Shao JZ, Xiang LX, Dong XJ, Zhang GR. Mes-enchymal stem cells: a promising candidate in regenera-tive medicine. Int J Biochem Cell Biol, 2008, 40(5): 815– 820.<\p>
[4] Caplan AI. Mesenchymal stem cells. J Orthop Res, 1991, 9(5): 641–650.<\p>
[5] Baksh D, Boland GM, Tuan RS. Cross-talk between Wnt signaling pathways in human mesenchymal stem cells leads to functional antagonism during osteogenic differen-tiation. J Cell Biochem, 2007, 101(5): 1109–1124.<\p>
[6] McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell, 2004, 6(4): 483–495.<\p>
[7] Wu R, Liu G, Bharadwaj S, Zhang Y. Isolation and myogenic differentiation of mesenchymal stem cells for urologic tis- sue engineering. Methods Mol Biol, 2013, 1001(1): 65–80.<\p>
[8] Beier JP, Bitto FF, Lange C, Klumpp D, Arkudas A, Ble-iziffer O, Boos AM, Horch RE, Kneser U. Myogenic dif-ferentiation of mesenchymal stem cells co-cultured with primary myoblasts. Cell Biol Int, 2011, 35(4): 397– 406.<\p>
[9] Lee KD. Applications of mesenchymal stem cells: an up-dated review. Chang Gung Med J, 2008, 31(3): 228–236.<\p>
[10] Ramos A and Camargo FD. The Hippo signaling pathway and stem cell biology. Trends Cell Biol, 2012, 22(7): 339– 346.<\p>
[11] Zhao B, Tumaneng K, Guan KL. The Hippo pathway in organ size control, tissue regeneration and stem cell self-renewal. Nat Cell Biol, 2011, 13(8): 877–883.<\p>
[12] Byun MR, Jeong H, Bae SJ, Kim AR, Hwang ES, Hong JH. TAZ is required for the osteogenic and anti-adipogenic ac-tivities of kaempferol. Bone, 2012, 50(1): 364–372.<\p>
[13] Hong JH, Hwang ES, McManus MT, Amsterdam A, Tian Y, Kalmukova R, Mueller E, Benjamin T, Spiegelman BM, Sharp PA, Hopkins N, Yaffe MB. TAZ, a transcriptional modulator of mesenchymal stem cell differentiation. Sci-ence, 2005, 309(5737): 1074–1078.<\p>
[14] Zhao B, Lei QY, Guan KL. The Hippo-YAP pathway: new connections between regulation of organ size and cancer. Curr Opin Cell Biol, 2008, 20(6): 638–646.<\p>
[15] Mao YP, Mulvaney J, Zakaria S, Yu T, Morgan KM, Allen S, Basson MA, Francis-West P, Irvine KD. Characteriza-tion of a Dchs1 mutant mouse reveals requirements for Dchs1-Fat4 signaling during mammalian development. Development, 2011, 138(5): 947–957.<\p>
[16] Zhao B, Li L, Lei QY, Guan KL. The Hippo-YAP pathway in organ size control and tumorigenesis. Genes Dev, 2010, 24(9): 862–874.<\p>
[17] 许传铭, 万福生. 哺乳动物Hippo信号通路: 肿瘤治疗的新标靶. 遗传, 2012, 34(3): 269–280.<\p>
[18] Kanai F, Marignani PA, Sarbassova D, Yagi R, Hall RA, Donowitz M, Hisaminato A, Fujiwara T, Ito Y, Cantley LC, Yaffe MB. TAZ: a novel transcriptional co-activator regu-lated by interactions with 14-3-3 and PDZ domain proteins. EMBO J, 2000, 19(24): 6778–6791.<\p>
[19] Zhao B, Wei XM, Li WQ, Udan RS, Yang Q, Kim J, Xie J, Ikenoue T, Yu JD, Li L, Zheng P, Ye KQ, Chinnaiyan A, Halder G, Lai ZC, Guan KL. Inactivation of YAP onco-protein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev, 2007, 21(21): 2747–2761.<\p>
[20] Hong WJ, Guan KL. The YAP and TAZ transcription co-activators: Key downstream effectors of the mammal-ian Hippo pathway. Seminars Cell Dev Biol, 2012, 23(7): 785–793.<\p>
[21] Bork P, Sudol M. The WW domain: a signalling site in dystrophin. Trends Biochem Sci, 1994, 19(12): 531–533.<\p>
[22] Sudol M, Bork P, Einbond A, Kastury K, Druck T, Negrini M, Huebner K, Lehman D. Characterization of the mam-malian YAP (Yes-associated protein) gene and its role in defining a novel protein module, the WW domain. J Biol Chem, 1995, 270(24): 14733–14741.<\p>
[23] Pobbati AV, Hong W. Emerging roles of TEAD transcrip-tion factors and its coactivators in cancers. Cancer Biol Ther, 2013, 14(5): 390–398.<\p>
[24] Cui CB, Cooper LF, Yang XL, Karsenty G, Aukhil I. Transcriptional coactivation of bone-specific transcription factor Cbfa1 by TAZ. Mol Cell Biol, 2003, 23(3): 1004– 1013.<\p>
[25] Sudol M. Yes-associated protein (YAP65) is a proline-rich phosphoprotein that binds to the SH3 domain of the Yes proto-oncogene product. Oncogene, 1994, 9(8): 2145–2152.<\p>
[26] Id Boufker H, Lagneaux L, Najar M, Piccart M, Ghanem G, Body JJ, Journé F. The Src inhibitor dasatinib accelerates the differentiation of human bone marrow-derived mes-enchymal stromal cells into osteoblasts. BMC Cancer, 2010, 10(1): 298.<\p>
[27] Yagi R, Chen LF, Shigesada K, Murakami Y, Ito Y. A WW domain-containing yes-associated protein (YAP) is a novel transcriptional co-activator. EMBO J, 1999, 18(9): 2551–2562.<\p>
[28] He Q, Huang HY, Zhang YY, Li X, Qian SW, Tang QQ. TAZ is downregulated by dexamethasone during the dif-ferentiation of 3T3-L1 preadipocytes. Biochem Biophys Res Commun, 2012, 419(3): 573–577.<\p>
[29] Park BH, Kim DS, Won GW, Jeon HJ, Oh BC, Lee Y, Kim EG, Lee YH. Mammalian ste20-like kinase and SAV1 promote 3T3-L1 adipocyte differentiation by activation of PPARγ. PLoS ONE, 2012, 7(1): e30983.<\p>
[30] Genini D, Catapano CV. Control of peroxisome prolifera-tor-activated receptor fate by the ubiquitinproteasome system. J Recept Signal Transduct Res, 2006, 26(5-6): 679–692.<\p>
[31] Tedesco FS, Dellavalle A, Diaz-Manera J, Messina G, Cossu G. Repairing skeletal muscle: regenerative potential of skeletal muscle stem cells. J Clin Invest, 2010, 120(1): 11–19.<\p>
[32] Grabowska I, Streminska W, Janczyk-Ilach K, Machaj EK, Pojda Z, Hoser G, Kawiak J, Moraczewski J, Ciemerych MA, Brzoska E. Myogenic potential of mesenchymal stem cells - the case of adhesive fraction of human umbilical cord blood cells. Curr Stem Cell Res Ther, 2013, 8(1): 82– 90.<\p>
[33] Jeong H, Bae SJ, An SY, Byun MR, Hwang JH, Yaffe MB, Hong JH, Hwang ES. TAZ as a novel enhancer of MyoD-mediated myogenic differentiation. FASEB J, 2010, 24(9): 3310–3320.<\p>
[34] Nejigane S, Haramoto Y, Okuno M, Takahashi S, Asashima M. The transcriptional coactivators Yap and TAZ are expressed during early Xenopus development. Int J Dev Biol, 2011, 55(1): 121–126.<\p>
[35] Watt KI, Judson R, Medlow P, Reid K, Kurth TB, Burniston JG, Ratkevicius A, De Bari C, Wackerhage H. Yap is a novel regulator of C2C12 myogenesis. Biochem Biophys Res Commun, 2010, 393(4): 619–624.<\p>
[36] Boland GM, Perkins G, Hall DJ, Tuan RS. Wnt 3a pro-motes proliferation and suppresses osteogenic differentia-tion of adult human mesenchymal stem cells. J Cell Bio-chem, 2004, 93(6): 1210–1230.<\p>
[37] Moldes M, Zuo Y, Morrison RF, Silva D, Park BH, Liu J, Farmer SR. Peroxisome-proliferator-activated receptor gamma suppresses Wnt/beta-catenin signalling during adi-pogenesis. Biochem J, 2003, 376(Pt 3): 607–613.<\p>
[38] Hartmann C, Tabin CJ. Dual roles of Wnt signaling during chondrogenesis in the chicken limb. Development, 2000, 127(14): 3141–3159.<\p>
[39] Varelas X, Miller BW, Sopko R, Song SY, Gregorieff A, Fellouse FA, Sakuma R, Pawson T, Hunziker W, McNeill H, Wrana JL, Attisano L. The Hippo pathway regulates Wnt/β-catenin signaling. Dev Cell, 2010, 18(4): 579–591.<\p>
[40] Zhao LM, Jiang S, Hantash BM. Transforming growth factor β1 induces osteogenic differentiation of murine bone marrow stromal cells. Tissue Eng Part A, 2010, 16(2): 725–733.<\p>
[41] Varelas X, Sakuma R, Samavarchi-Tehrani P, Peerani R, Rao BM, Dembowy J, Yaffe MB, Zandstra PW, Wrana JL. TAZ controls Smad nucleocytoplasmic shuttling and regu-lates human embryonic stem-cell self-renewal. Nat Cell Biol, 2008, 10(7): 837–848.<\p>
[42] Zimmermann G, Henle P, Küsswetter M, Moghaddam A, Wentzensen A, Richter W, Weiss S. TGF-β1 as a marker of delayed fracture healing. Bone, 2005, 36(5): 779–785.<\p>
[43] Cho HH, Shin KK, Kim YJ, Song JS, Kim JM, Bae YC, Kim CD, Jung JS. NF-kappaB activation stimulates os-teogenic differentiation of mesenchymal stem cells de-rived from human adipose tissue by increasing TAZ ex-pression. J Cell Physiol, 2010, 223(1): 168–177.<\p>
[44] Gilbert L, He XF, Farmer P, Boden S, Kozlowski M, Rubin J, Nanes MS. Inhibition of osteoblast differentiation by tumor necrosis factor-α. Endocrinology, 2000, 141(11): 3956–3964.<\p>
[45] Li BZ, Shi MX, Li J, Zhang HB, Chen B, Chen L, Gao WB, Giuliani N, Zhao RC. Elevated tumor necrosis factor-αsuppresses TAZ expression and impairs osteogenic po-tential of Flk-1+ mesenchymal stem cells in patients with multiple myeloma. Stem Cells Dev, 2007, 16(6): 921–930.<\p>
[46] Xing WR, Kim J, Wergedal J, Chen ST, Mohan S. Ephrin B1 regulates bone marrow stromal cell differentiation and bone formation by influencing TAZ transactivation via complex formation with NHERF1. Mol Cell Biol, 2010, 30(3): 711–721.<\p>
[47] Jang EJ, Jeong H, Kang JO, Kim NJ, Kim MS, Choi SH, Yoo SE, Hong JH, Bae MA, Hwang ES. TM-25659 en-hances osteogenic differentiation and suppresses adipo-genic differentiation by modulating the transcriptional co-activator TAZ. Br J Pharmacol, 2012, 165(5): 1584–1594.<\p>
[48] Jung H, Lee MS, Jang EJ, Ahn JH, Kang NS, Yoo SE, Bae MA, Hong JH, Hwang ES. Augmentation of PPARγ-TAZ interaction contributes to the anti-adipogenic activity of KR62980. Biochem Pharmacol, 2009, 78(10): 1323–1329.<\p>
[49] Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S, Cordenonsi M, Zanconato F, Le Digabel J, Forcato M, Bicciato S, Elvassore N, Piccolo S. Role of YAP/TAZ in mechanotransduction. Nature, 2011, 474(7350): 179–183.<\p>
[50] Wada K I, Itoga K, Okano T, Yonemura S, Sasaki H. Hippo pathway regulation by cell morphology and stress fibers. Development, 2011, 138(18): 3907–3914.<\p>
[51] Mauviel A, Nallet-Staub F, Varelas X. Integrating devel-opmental signals: a Hippo in the (path)way. Oncogene, 2012, 31(14): 1743–1756.<\p>
[52] Regué L, Mou F, Avruch J. G protein-coupled receptors engage the mammalian Hippo pathway through F-actin: F-Actin, assembled in response to Galpha12/13 induced RhoA-GTP, promotes dephosphorylation and activation of the YAP oncogene. BioEssays, 2013, 35(5): 430–435.<\p> |