遗传 ›› 2014, Vol. 36 ›› Issue (3): 200-207.doi: 10.3724/SP.J.1005.2014.0200
李美婷, 曹林林, 杨洋
收稿日期:
2013-11-06
修回日期:
2013-12-20
出版日期:
2014-03-20
发布日期:
2014-02-25
通讯作者:
杨洋, 博士, 副教授, 研究方向:表观遗传学。E-mail: yangsh@bjmu.edu.cn
E-mail:yangsh@bjmu.edu.cn
作者简介:
李美婷, 在读硕士研究生, 专业方向:表观遗传学。Tel: 010-82802167; E-mail: limeiting401@163.com
基金资助:
国家重点基础研究发展计划(973计划)项目(编号:2012CB517501)、国家自然科学基金项目(编号:81071676, 81372165, 31261140372)和北京市自然科学基金项目资助
Meiting Li, Linlin Cao, Yang Yang
Received:
2013-11-06
Revised:
2013-12-20
Online:
2014-03-20
Published:
2014-02-25
摘要:
表观遗传学是研究没有DNA序列变化的、可遗传的基因表达改变。表观遗传修饰可以参与多种生命过程, 其在糖脂代谢中也发挥了重要的作用。生物体内的糖脂代谢关系密切, 糖脂代谢紊乱会导致多种代谢性疾病的发生。文章主要从DNA甲基化、组蛋白修饰、非编码RNA调控等方面综述了表观遗传修饰在糖脂代谢中的研究进展。
李美婷, 曹林林, 杨洋. 表观遗传修饰在糖脂代谢中的作用[J]. 遗传, 2014, 36(3): 200-207.
Meiting Li, Linlin Cao, Yang Yang. The role of epigenetic modification in glucose and lipid metabolism[J]. HEREDITAS, 2014, 36(3): 200-207.
[1] Gopalakrishnan S, Van Emburgh BO, Robertson KD. DNA methylation in development and human disease. Mutat Res, 2008, 647(1-2): 30-38. <\p> [2] Auclair G, Weber M. Mechanisms of DNA methylation and demethylation in mammals. Biochimie, 2012, 94(11): 2202-2211. <\p> [3] Watt F, Molloy PL. Cytosine methylation prevents binding to DNA of a HeLa cell transcription factor required for optimal expression of the adenovirus major late promoter. Genes Dev, 1988, 2(9): 1136-1143. <\p> [4] Zhu WG, Srinivasan K, Dai ZY, Duan WR, Druhan LJ, Ding HM, Yee L, Villalona-Calero MA, Plass C, Otterson GA. Methylation of adjacent CpG sites affects Sp1/Sp3 binding and activity in the p21(Cip1) promoter. Mol Cell Biol, 2003, 23(12): 4056-4065. <\p> [5] Strahl BD, Allis CD. The language of covalent histone modifications. Nature, 2000, 403(6765): 41-45. <\p> [6] Taverna SD, Li H, Ruthenburg AJ, Allis CD, Patel DJ. How chromatin-binding modules interpret histone modi-fications: lessons from professional pocket pickers. Nat Struct Mol Biol, 2007, 14(11): 1025-1040. <\p> [7] Shi Y, Whetstine JR. Dynamic regulation of histone lysine methylation by demethylases. Mol Cell, 2007, 25(1): 1-14. <\p> [8] Martin C, Zhang Y. The diverse functions of histone ly-sine methylation. Nat Rev Mol Cell Biol, 2005, 6(11): 838-849. <\p> [9] Kouzarides T. Chromatin modifications and their function. Cell, 2007, 128(4): 693-705. <\p> [10] Skreka K, Schafferer S, Nat IR, Zywicki M, Salti A, Apostolova G, Griehl M, Rederstorff M, Dechant G, Hüt-tenhofer A. Identification of differentially expressed non-coding RNAs in embryonic stem cell neural differen-tiation. Nucleic Acids Res, 2012, 40(13): 6001-6015. <\p> [11] Kaikkonen MU, Lam MTY, Glass CK. Non-coding RNAs as regulators of gene expression and epigenetics. Cardiovasc Res, 2011, 90(3): 430-440. <\p> [12] Mattick JS, Makunin IV. Non-coding RNA. Hum Mol Genet, 2006, 15(Suppl 1): R17-R29. <\p> [13] Tuddenham L, Wheeler G, Ntounia-Fousara S, Waters J, Hajihosseini MK, Clark I, Dalmay T. The cartilage spe-cific microRNA-140 targets histone deacetylase 4 in mouse cells. Febs Lett, 2006, 580(17): 4214-4217. <\p> [14] Fabbri M, Garzon R, Cimmino A, Liu ZF, Zanesi N, Cal-legari E, Liu SJ, Alder H, Costinean S, Fernan-dez-Cymering C, Volinia S, Guler G, Morrison CD, Chan KK, Marcucci G, Calin GA, Huebner K, Croce CM. Mi-croRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci USA, 2007, 104(40): 15805-15810. <\p> [15] Kawasaki H, Taira K. Induction of DNA methylation and gene silencing by short interfering RNAs in human cells. Nature, 2004, 431(7005): 211-217. <\p> [16] Aravin AA, Sachidanandam R, Girard A, Fejes-Toth K, Hannon GJ. Developmentally regulated piRNA clusters implicate MILI in transposon control. Science, 2007, 316(5825): 744-747. <\p> [17] Yang PK, Kuroda MI. Noncoding RNAs and intranuclear positioning in monoallelic gene expression. Cell, 2007, 128(4): 777-786. <\p> [18] Volkmar M, Dedeurwaerder S, Cunha DA, Ndlovu MN, Defrance M, Deplus R, Calonne E, Volkmar U, Igoillo- Esteve M, Naamane N, Del Guerra S, Masini M, Bugliani M, Marchetti P, Cnop M, Eizirik DL, Fuks F. DNA me-thylation profiling identifies epigenetic dysregulation in pancreatic islets from type 2 diabetic patients. Embo J, 2012, 31(6): 1405-1426. <\p> [19] Kuroda A, Rauch TA, Todorov I, Ku HT, Al-Abdullah IH, Kandeel F, Mullen Y, Pfeifer GP, Ferreri K. Insulin gene expression is regulated by DNA methylation. PloS ONE, 2009, 4(9): e6953. <\p> [20] Yang BT, Dayeh TA, Kirkpatrick CL, Taneera J, Kumar R, Groop L, Wollheim CB, Nitert MD, Ling C. Insulin pro-moter DNA methylation correlates negatively with insulin gene expression and positively with HbA(1c) levels in human pancreatic islets. Diabetologia, 2011, 54(2): 360- 367. <\p> [21] Gilbert ER, Liu DM. Epigenetics: the missing link to un-derstanding beta-cell dysfunction in the pathogenesis of type 2 diabetes. Epigenetics, 2012, 7(8): 841-852. <\p> [22] Ling C, Del Guerra S, Lupi R, Rönn T, Granhall C, Luthman H, Masiello P, Marchetti P, Groop L, Del Prato S. Epigenetic regulation of PPARGC1A in human type 2 diabetic islets and effect on insulin secretion. Diabetolo-gia, 2008, 51(4): 615-622. <\p> [23] Sookoian S, Pirola CJ. DNA methylation and hepatic in-sulin resistance and steatosis. Curr Opin Clin Nutr Metab Care, 2012, 15(4): 350-356. <\p> [24] Park JH, Stoffers DA, Nicholls RD, Simmons RA. Devel-opment of type 2 diabetes following intrauterine growth re-tardation in rats is associated with progressive epigenetic silencing of Pdx1. J Clin Invest, 2008, 118(6): 2316-2324. <\p> [25] Jiang MH, Zhang YH, Liu M, Lan MS, Fei J, Fan WW, Gao X, Lu D. Hypermethylation of hepatic glucokinase and L-type pyruvate kinase promoters in high-fat diet- induced obese rats. Endocrinology, 2011, 152(4): 1284- 1289. <\p> [26] Lenoir O, Flosseau K, Ma FX, Blondeau B, Mai A, Bas-sel-Duby R, Ravassard P, Olson EN, Haumaitre C, Scharfmann R. Specific control of pancreatic endocrine beta- and delta-cell mass by class IIa histone deacetylases HDAC4, HDAC5, and HDAC9. Diabetes, 2011, 60(11): 2861-2871. <\p> [27] Chakrabarti SK, Francis J, Ziesmann SM, Garmey JC, Mirmira RG. Covalent histone modifications underlie the developmental regulation of insulin gene transcription in pancreatic beta cells. J Biol Chem, 2003, 278(26): 23617- 23623. <\p> [28] Francis J, Chakrabarti SK, Garmey JC, Mirmira RG. Pdx-1 links histone H3-Lys-4 methylation to RNA po-lymerase II elongation during activation of insulin tran-scription. J Biol Chem, 2005, 280(43): 36244-36253. <\p> [29] Deering TG, Ogihara T, Trace AP, Maier B, Mirmira RG. Methyltransferase Set7/9 maintains transcription and eu-chromatin structure at islet-enriched genes. Diabetes, 2009, 58(1): 185-193. <\p> [30] McGee SL, van Denderen BJW, Howlett KF, Mollica J, Schertzer JD, Kemp BE, Hargreaves M. AMP-activated protein kinase regulates GLUT4 transcription by phos-phorylating histone deacetylase 5. Diabetes, 2008, 57(4): 860-867. <\p> [31] Zhong L, D'Urso A, Toiber D, Sebastian C, Henry RE, Vadysirisack DD, Guimaraes A, Marinelli B, Wikstrom JD, Nir T, Clish CB, Vaitheesvaran B, Iliopoulos O, Kur-land I, Dor Y, Weissleder R, Shirihai OS, Ellisen LW, Espinosa JM, Mostoslavsky R. The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1alpha. Cell, 2010, 140(2): 280-293. <\p> [32] Lynn FC, Skewes-Cox P, Kosaka Y, McManus MT, Harfe BD, German MS. MicroRNA expression is required for pancreatic islet cell genesis in the mouse. Diabetes, 2007, 56(12): 2938-2945. <\p> [33] Poy MN, Eliasson L, Krutzfeldt J, Kuwajima S, Ma XS, Macdonald PE, Pfeffer S, Tuschl T, Rajewsky N, Rorsman P, Stoffel M. A pancreatic islet-specific microRNA regu-lates insulin secretion. Nature, 2004, 432(7014): 226-230. <\p> [34] El OA, Baroukh N, Martens GA, Lebrun P, Pipeleers D, van Obberghen E. miR-375 targets 3'-phosphoinositide- dependent protein kinase-1 and regulates glucose-induced biological responses in pancreatic beta-cells. Diabetes, 2008, 57(10): 2708-2717. <\p> [35] Lovis P, Gattesco S, Regazzi R. Regulation of the expres-sion of components of the exocytotic machinery of insu-lin-secreting cells by microRNAs. Biol Chem, 2008, 389(3): 305-312. <\p> [36] Sakamoto H, Kogo Y, Ohgane J, Hattori N, Yagi S, Ta-naka S, Shiota K. Sequential changes in genome-wide DNA methylation status during adipocyte differentiation. Biochem Biophys Res Commun, 2008, 366(2): 360-366. <\p> [37] Jiang YD, Liu ZH, Xiong JT, Jun C, Li GZ, Wang SR. Homocysteine-mediated PPARalpha, gamma DNA me-thylation and its potential pathogenic mechanism in monocytes. DNA Cell Biol, 2008, 27(3): 143-150. <\p> [38] Fujiki K, Kano F, Shiota K, Murata M. Expression of the peroxisome proliferator activated receptor gamma gene is repressed by DNA methylation in visceral adipose tissue of mouse models of diabetes. BMC Biol, 2009, 7(1): 38. <\p> [39] Noer A, Sørensen AL, Boquest AC, Collas P. Stable CpG hypomethylation of adipogenic promoters in freshly iso-lated, cultured, and differentiated mesenchymal stem cells from adipose tissue. Mol Biol Cell, 2006, 17(8): 3543-3556. <\p> [40] Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, Lindgren CM, Perry JR, Elliott KS, Lango H, Rayner NW, Shields B, Harries LW, Barrett JC, Ellard S, Groves CJ, Knight B, Patch AM, Ness AR, Ebrahim S, Lawlor DA, Ring SM, Ben-Shlomo Y, Jarvelin MR, So-vio U, Bennett AJ, Melzer D, Ferrucci L, Loos RJ, Bar-roso I, Wareham NJ, Karpe F, Owen KR, Cardon LR, Walker M, Hitman GA, Palmer CN, Doney AS, Morris AD, Smith GD, Hattersley AT, McCarthy MI. A common variant in the FTO gene is associated with body mass in-dex and predisposes to childhood and adult obesity. Sci-ence, 2007, 316(5826): 889-894. <\p> [41] Gluckman PD. Epigenetics and metabolism in 2011: Epi-genetics, the life-course and metabolic disease. Nat Rev Endocrinol, 2011, 8(2): 74-76. <\p> [42] Tateishi K, Okada Y, Kallin EM, Zhang Y. Role of Jhdm2a in regulating metabolic gene expression and obe-sity resistance. Nature, 2009, 458(7239): 757-761. <\p> [43] Knutson SK, Chyla BJ, Amann JM, Bhaskara S, Huppert SS, Hiebert SW. Liver-specific deletion of histone deacetylase 3 disrupts metabolic transcriptional networks. EMBO J, 2008, 27(7): 1017-1028. <\p> [44] Wang LF, Xu SLY, Lee JE, Baldridge A, Grullon S, Peng WQ, Ge K. Histone H3K9 methyltransferase G9a re-presses PPARγ expression and adipogenesis. EMBO J, 2013, 32(1): 45-59. <\p> [45] Elhanati S, Kanfi Y, Varvak A, Roichman A, Car-mel-Gross I, Barth S, Gibor G, Cohen HY. Multiple regulatory layers of SREBP1/2 by SIRT6. Cell Rep, 2013, 4(5): 905-912. <\p> [46] Lin Q, Gao ZG, Alarcon RM, Ye JP, Yun Z. A role of miR-27 in the regulation of adipogenesis. FEBS J, 2009, 276(8): 2348-2358. <\p> [47] Karbiener M, Fischer C, Nowitsch S, Opriessnig P, Papak C, Ailhaud G, Dani C, Amri EZ, Scheideler M. microRNA miR-27b impairs human adipocyte differentiation and targets PPARγ. Biochem Biophys Res Commun, 2009, 390(2): 247-251. <\p> [48] Kim SY, Kim AY, Lee HW, Son YH, Lee GY, Lee JW, Lee YS, Kim JB. miR-27a is a negative regulator of adi-pocyte differentiation via suppressing PPARγ expression. Biochem Biophys Res Commun, 2010, 392(3): 323-328. <\p> [49] Esau C, Davis S, Murray SF, Yu XX, Pandey SK, Pear M, Watts L, Booten SL, Graham M, McKay R, Subramaniam A, Propp S, Lollo BA, Freier S, Bennett CF, Bhanot S, Monia BP. miR-122 regulation of lipid metabolism re-vealed by in vivo antisense targeting. Cell Metab, 2006, 3(2): 87-98. <\p> [50] Fernández-Hernando C, Suárez Y, Rayner KJ, Moore KJ. MicroRNAs in lipid metabolism. Curr Opin Lipidol, 2011, 22(2): 86-92.<\p> |
[1] | 张競文,续倩,李国亮. 癌症发生发展中的表观遗传学研究[J]. 遗传, 2019, 41(7): 567-581. |
[2] | 马志鹏, 陈军. 无义突变与“遗传补偿效应”[J]. 遗传, 2019, 41(5): 359-364. |
[3] | 岳敏, 杨禹, 郭改丽, 秦曦明. 哺乳动物生物钟的遗传和表观遗传研究进展[J]. 遗传, 2017, 39(12): 1122-1137. |
[4] | 李元丰, 韩玉波, 曹鹏博, 孟金凤, 李海北, 秦庚, 张锋, 靳光付, 杨勇, 邬玲仟, 平杰, 周钢桥. 2015年中国医学遗传学研究领域若干重要进展[J]. 遗传, 2016, 38(5): 363-390. |
[5] | 张笑, 贾桂芳. RNA表观遗传修饰:N6-甲基腺嘌呤[J]. 遗传, 2016, 38(4): 275-288. |
[6] | 方科, 张凯翔, 王建, 付志猛, 赵湘辉. 表观遗传学新标记--5-羟甲基胞嘧啶检测方法的研究进展[J]. 遗传, 2016, 38(3): 206-216. |
[7] | 孙凌云, 李星逾, 孙志为. 原发性肝癌的表观遗传学及其治疗[J]. 遗传, 2015, 37(6): 517-527. |
[8] | 郑佳, 肖新华, 张茜, 于淼, 许建萍, 王志新, 刘一静, 李明敏. 母鼠营养不良导致子代在生命早期出现糖脂代谢紊乱及其机制探讨[J]. 遗传, 2015, 37(1): 70-76. |
[9] | 任才芳,孙红艳,王立中,张国敏,樊懿萱,颜光耀,王丹,王锋. iPSCs遗传稳定性与重编程机制的研究进展[J]. 遗传, 2014, 36(9): 879-887. |
[10] | 邓大君. DNA甲基化和去甲基化的研究现状及思考[J]. 遗传, 2014, 36(5): 403-410. |
[11] | 丁楠, 渠鸿竹, 方向东. ENCODE计划和功能基因组研究[J]. 遗传, 2014, 36(3): 237-247. |
[12] | 沈圣, 屈彦纯, 张军. 下一代测序技术在表观遗传学研究中的重要应用及进展[J]. 遗传, 2014, 36(3): 256-275. |
[13] | 王庭璋 单杲 徐建红 薛庆中. 基因组规模DNA甲基化测序数据预处理及表观遗传分析[J]. 遗传, 2013, 35(6): 685-684. |
[14] | 秦丹 徐存拴. 非编码DNA序列的功能及其鉴定[J]. 遗传, 2013, 35(11): 1253-1264. |
[15] | 汤琳琳 刘琼 步世忠 徐雷艇 王钦文 麦一峰 段世伟. 2型糖尿病环境因素与DNA甲基化的研究进展[J]. 遗传, 2013, 35(10): 1143-1152. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: