遗传 ›› 2014, Vol. 36 ›› Issue (3): 208-219.doi: 10.3724/SP.J.1005.2014.0208
施子晗, 李泽琴, 张根发
收稿日期:
2013-08-19
修回日期:
2013-12-13
出版日期:
2014-03-20
发布日期:
2014-02-25
通讯作者:
张根发, 博士, 教授, 研究方向:植物抗逆分子遗传。E-mail: gfzh@bnu.edu.cn
E-mail:gfzh@bnu.edu.cn
作者简介:
施子晗, 硕士研究生, 专业方向:植物抗逆分子遗传。E-mail: huoniao1989@163.com
基金资助:
国家自然科学基金项目(编号:31070289, 31270365)资助
Zihan Shi, Zeqin Li, Genfa Zhang
Received:
2013-08-19
Revised:
2013-12-13
Online:
2014-03-20
Published:
2014-02-25
摘要:
组蛋白共价修饰作为表观遗传修饰的重要部分, 主要包括乙酰化和甲酰化、甲基化、磷酸化、泛素化和SUMO化等, 它们形成一个复杂的网络共同调控基因的表达, 其中组蛋白甲基化修饰成为研究的热点, 甲基化主要发生在赖氨酸残基上。近年来, 随着有关植物组蛋白赖氨酸甲基化修饰研究的不断深入, 发现其通过改变自身赖氨酸残基的甲基化状态和甲基化程度, 形成转录激活或者转录抑制标记, 调控基因的表达, 在植物开花和逆境胁迫的响应过程中起着至关重要的作用。H3组蛋白的赖氨酸甲基化修饰能够调控FLC基因和有关抗性基因的表达, 具体表现为:H3K4的三甲基化促进FLC的表达, H3K27的三甲基化则抑制FLC的表达; H3K4me3作为转录激活标记, 可激活PtdIns5P基因的表达, 启动响应干旱的脂质合成信号通路, 响应干旱胁迫; 相反, H3K27me3作为一种转录抑制标记, 低水平的H3K27me3诱导COR15A和ATGOLS3基因表达, 它们分别编码叶绿体低温保护蛋白Cor15am和肌醇半乳糖合成酶GOLS, 以抵抗寒冷胁迫。文章主要综述了植物组蛋白赖氨酸甲基化修饰参与DNA甲基化、开花过程以及应答逆境胁迫的分子机制。
中图分类号:
施子晗, 李泽琴, 张根发. 植物组蛋白赖氨酸化修饰参与基因表达调控的机理[J]. 遗传, 2014, 36(3): 208-219.
Zihan Shi, Zeqin Li, Genfa Zhang. The mechanism of histone lysine methylation of plant involved in gene expression and regulation[J]. HEREDITAS, 2014, 36(3): 208-219.
[1] Snustad DP, Simmons MJ, Jenkins JB. Principles of Genetics. USA: John Wiley, 1997. <\p> [2] Holliday R. Epigenetics: an overview. Dev Genet, 1994, 15(6): 453–457. <\p> [3] Klose RJ, Zhang Y. Regulation of histone methylation by demethylimination and demethylation. Nat Rev Mol Cell Biol, 2007, 8(4): 307–318. <\p> [4] Chinnusamy V, Zhu JK. Epigenetic regulation of stress responses in plants. Curr Opin Plant Biol, 2009, 12(2): 133–139. <\p> [5] Winget JM, Mayor T. The diversity of ubiquitin recogni-tion: hot spots and varied specificity. Mol Cell, 2010, 38(5): 627–635. <\p> [6] Kashiwagi K, Nimura K, Ura K, Kaneda Y. DNA methyl-transferase 3b preferentially associates with condensed chromatin. Nucleic Acids Res, 2011, 39(3): 874– 888. <\p> [7] Yun MY, Wu J, Workman JL, Li B. Readers of histone modifications. Cell Res, 2011, 21(4): 564–578. <\p> [8] Roque A, Ponte I, Arrondo JL, Suau P. Phosphorylation of the carboxy-terminal domain of histone H1: effects on secondary structure and DNA condensation. Nucleic Acids Res, 2008, 36(14): 4719–4726. <\p> [9] 王维, 孟智启, 石放雄. 组蛋白修饰及其生物学效应. 遗传, 2012, 34(7): 810–818. <\p> [10] Jin JJ, Cai Y, Li B, Conaway RC, Workman JL, Conaway JW, Kusch T. In and out: histone variant exchange in chromatin. Trends Biochem Sci, 2005, 30(12): 680–687. <\p> [11] Cook PJ, Ju BG, Telese F, Wang XT, Glass CK, Rosenfeld MG. Tyrosine dephosphorylation of H2AX modulates apoptosis and survival decisions. Nature, 2009, 458(7238): 591–596. <\p> [12] Lan L, Nakajima S, Kapetanaki MG, Hsieh CL, Fagerburg M, Thickman K, Rodriguez-Collazo P, Leuba SH, Levine AS, Rapi?-Otrin V. Monoubiquitinated histone H2A de-stabilizes photolesion-containing nucleosomes with con-comitant release of UV-damaged DNA-binding protein E3 ligase. J Biol Chem, 2012, 287(15): 12036–12049. <\p> [13] Lu CR, Shi Y, Luo Y, Duan LN, Hou Y, Hu HB, Wang Z, Xiang PD. MAPKs and Mst1/Caspase-3 pathways con-tribute to H2B phosphorylation during UVB-induced apoptosis. Sci China Life Sci, 2010, 53(6): 663–668. <\p> [14] Piro AS, Mayekar MK, Warner MH, Davis CP, Arndt KM. Small region of Rtf1 protein can substitute for complete Paf1 complex in facilitating global histone H2B ubiquity-lation in yeast. Proc Natl Acad Sci USA, 2012, 109(27): 10837–10842. <\p> [15] Musselman CA, Lalonde ME, Côté J, Kutateladze TG. Perceiving the epigenetic landscape through histone readers. Nat Struct Mol Biol, 2012, 19(12): 1218–1227. <\p> [16] Selvi BR, Batta K, Kishore AH, Mantelingu K, Varier RA, Balasubramanyam K, Pradhan SK, Dasgupta D, Sriram S, Agrawal S, Kundu TK. Identification of a novel inhibitor of coactivator-associated arginine methyltransferase 1 (CARM1)-mediated methylation of histone H3 Arg-17. J Biol Chem, 2010, 285(10): 7143–7152. <\p> [17] Mishima Y, Miyagi S, Saraya A, Negishi M, Endoh M, Endo TA, Toyoda T, Shinga J, Katsumoto T, Chiba T, Ya-maguchi N, Kitabayashi I, Koseki H, Iwama A. The Hbo1-Brd1/Brpf2 complex is responsible for global ace-tylation of H3K14 and required for fetal liver erythropoi-esis. Blood, 2011, 118(9): 2443–2453. <\p> [18] Wang C, Yao CF, Li YR, Cai WL, Bao XM, Girton J, Johansen J, Johansen KM. Evidence against a role for the JIL-1 kinase in H3S28 phosphorylation and 14–3-3 re-cruitment to active genes in Drosophila. PLoS ONE, 2013, 8(4): e62484. <\p> [19] Yan QS, Dutt S, Xu R, Graves K, Juszczynski P, Manis JP, Shipp MA. BBAP monoubiquitylates histone H4 at lysine 91 and selectively modulates the DNA damage response. Mol Cell, 2009, 36(1): 110–120. <\p> [20] 邢欣荣, 刘宇博, 程智逵, 伍会健. 组蛋白修饰酶对基因转录的调控. 生理科学进展, 2008, 39(4): 314–318. <\p> [21] Ng DW, Wang T, Chandrasekharan MB, Aramayo R, Kertbundit S, Hall TC. Plant SET domain-containing proteins: Structure, function and regulation. Biochim Bio-phys Acta, 2007, 1769(5–6): 316–329. <\p> [22] Cao R, Zhang Y. The functions of E(Z)/ EZH2-mediated methylation of lysine27 in histone H3. Curr Opin Genet Dev, 2004, 14(2): 155–164. <\p> [23] http://www.chromdb.org. <\p> [24] Jackson JP, Lindroth AM, Cao XF, Jacobsen SE. Control of CpNpG DNA methylation by the KRYPTONITE his-tone H3 methyltransferase. Nature, 2002, 416(6880): 556– 560. <\p> [25] Malagnac F, Bartee L, Bender J. An Arabidopsis SET do-main protein required for maintenance but not establish-ment of DNA methylation. EMBO J, 2002, 21(24): 6842– 6852. <\p> [26] Jasencakova Z, Soppe WJJ, Meister A, Gernand D, Turner BM, Schubert I. Histone modifications in Arabidopsis- high methylation of H3 lysine 9 is dispensable for consti-tutive heterochromatin. Plant J, 2003, 33(3): 471–480. <\p> [27] Alvarez-Venegas R, Pien S, Sadder M, Witmer X, Gross-niklaus U, Avramova Z. ATX-1, an Arabidopsis homolog of trithorax, activates flower homeotic genes. Curr Biol, 2003, 13(8): 627–637. <\p> [28] de la Paz Sanchez M, Gutierrez C. Arabidopsis ORC1 is a PHD-containing H3K4me3 effector that regulates tran-scription. Proc Natl Acad Sci USA, 2009, 106(6): 2065– 2070. <\p> [29] Spedaletti V, Polticelli F, Capodaglio V, Schininà ME, Stano P, Federico R, Tavladoraki P. Characterization of a lysine-specific histone demethylase from Arabidopsis thaliana. Biochemistry, 2008, 47(17): 4936–4947. <\p> [30] Saleh A, Alvarez-Venegas R, Yilmaz M, Le O, Hou GC, Ssdder M, Al-Abdallat A, Xia YN, Lu GQ, Ladunga I, Avramova Z. The highly similar Arabidopsis homologs of trithorax ATX1 and ATX2 encode proteins with divergent biochemical functions. Plant Cell, 2008, 20(3): 568–579. <\p> [31] Yang HC, Mo HX, Fan D, Cao Y, Cui SJ, Ma LG. Over-expression of a histone H3K4 demethylase, JMJ15, accel-erates flowering time in Arabidopsis. Plant Cell Rep, 2012, 31(7): 1297–1308. <\p> [32] Lu FL, Cui X, Zhang SB, Liu CY, Cao XF. JMJ14 is an H3K4 demethylase regulating flowering time in Arabi-dopsis. Cell Res, 2010, 20(3): 387–390. <\p> [33] Cartagena JA, Matsunaga S, Seki M, Kurihara D, Yoko-yama M, Shinozakic K, Fujimotod S, Azumie Y, Uchi-yama S, Fukuia K. The Arabidopsis SDG4 contributes to the regulation of pollen tube growth by methylation of histone H3 lysines 4 and 36 in mature pollen. Dev Biol, 2008, 315(2): 355–368. <\p> [34] Yao XZ, Feng HY, Yu Y, Dong AW, Shen WH. SDG2- mediated H3K4 methylation is required for proper Arabi-dopsis root growth and development. PLoS One, 2013, 8(2): e56537. <\p> [35] Jackson JP, Johnson L, Jasencakova Z, Zhang X, Perez-Burgos L, Singh PB, Cheng XD, Schubert I, Jenu-wein T, Jacobsen SE. Dimethylation of histone H3 lysine 9 is a critical mark for DNA methylation and gene silencing in Arabidopsis thaliana. Chromosoma, 2004, 112(6): 308–315. <\p> [36] Saze H, Shiraishi A, Miura A, Kakutani T. Control of genic DNA methylation by a jmjC domain-containing protein in Arabidopsis thaliana. Science, 2008, 319(5862): 462–465. <\p> [37] Ebbs ML, Bender J. Locus-specific control of DNA me-thylation by the Arabidopsis SUVH5 histone methyltransferase. Plant Cell, 2006, 18(5): 1166–1176. <\p> [38] Ebbs ML, Bartee L, Bender J. H3 lysine 9 methylation is maintained on a transcribed inverted repeat by combined action of SUVH6 and SUVH4 methyltransferases. Mol Cell Biol, 2005, 25(23): 10507–10515. <\p> [39] Thorstensen T, Fischer A, Sandvik SV, Johnsen SS, Grini PE, Grini PE, Reuter G, Aalen RB. The Arabidopsis SUVR4 protein is a nucleolar histone methyltransferase with preference for monomethylated H3K9. Nucleic Acids Res, 2006, 34(19): 5461–5470. <\p> [40] Naumann K, Fischer A, Hofmann I, Krauss V, Phalke S, Irmler K, Hause G, Aurich AC, Dorn R, Jenuwein T, Reuler C. Pivotal role of AtSUVH2 in heterochromatic histone methylation and gene silencing in Arabidopsis. EMBO J, 2005, 24(7): 1418–1429. <\p> [41] Jacob Y, Feng SH, Leblanc CA, Bernatavichute YV, Stroud H, Stroud H, Cokus S, Johnson LM, Pellegrini M, Jacobsen SE, Michaels SD. ATXR5 and ATXR6 are H3K27 monomethyltransferases required for chromatin structure and gene silencing. Nat Struct Mol Biol, 2009, 16(7): 763–768. <\p> [42] Exner V, Aichinger E, Shu H, Wildhaber T, Alfarano P, Caflisch A, Gruissem W, Köhler C, Hennig L. The chromodomain of LIKE HETEROCHROMATIN PROTEIN 1 is essential for H3K27me3 binding and function during Arabidopsis development. PLoS One, 2009, 4(4): e5335. <\p> [43] Schubert D, Primavesi L, Bishopp A, Roberts G, Doonan J, Jenuwein T, Goodrich J. Silencing by plant Polycomb- group genes requires dispersed trimethylation of histone H3 at lysine 27. EMBO J, 2006, 25(19): 4638–4649. <\p> [44] Grossniklaus U, Vielle-Calzada JP, Hoeppner MA, Gagliano WB. Maternal control of embryogenesis by MEDEA, a polycomb group gene in Arabidopsis. Science, 1998, 280(5362): 446–450. <\p> [45] Wang D, Tyson MD, Jackson SS, Yadegari R. Partially redundant functions of two SET-domain Polycomb-group proteins in controlling initiation of seed development in Arabidopsis. Proc Natl Acad Sci USA, 2006, 103(35): 13244–13249. <\p> [46] Dong GF, Ma DP, Li JX. The histone methyltransferase SDG8 regulates shoot branching in Arabidopsis. Biochem Biophys Res Commun, 2008, 373(4): 659–664. <\p> [47] Xu L, Zhao Z, Dong AW, Soubigou-Taconnat L, Renou JP, Steinmetz A, Shen WH. Di- and tri- but not monomethylation on histone H3 lysine 36 marks active transcrip-tion of genes involved in flowering time regulation and other processes in Arabidopsis thaliana. Mol Cell Biol, 2008, 28(4): 1348–1360. <\p> [48] Niu LF, Zhang Y, Pei YX, Liu CY, Cao XF. Redundant requirement for a pair of PROTEIN ARGININE METHYLTRANSFERASE4 homologs for the proper regulation of Arabidopsis flowering time. Plant Physiol, 2008, 148(1): 490–503. <\p> [49] Yan DS, Zhang Y, Niu LF, Yuan Y, Cao XF. Identification and characterization of two closely related histone H4 ar-ginine 3 methyltransferases in Arabidopsis thaliana. Bio-chem J, 2007, 408(1): 113–121. <\p> [50] Wang X, Zhang Y, Ma QB, Zhang ZL, Xue YB, Bao SL, Chong K. SKB1-mediated symmetric dimethylation of histone H4R3 controls flowering time in Arabidopsis. EMBO J, 2007, 26(7): 1934–1941. <\p> [51] Niu LF, Zhang YL, Pei YX, Liu CY, Cao XF. Regulation of flowering time by the protein arginine methyltransferase AtPRMT10. EMBO Rep, 2007, 8(12): 1190–1195. <\p> [52] Liu CY, Lu FL, Cui X, Cao XF. Histone methylation in higher plants. Annu Rev Plant Biol, 2010, 61: 395–420. <\p> [53] Shi YJ, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA, Casero RA, Shi Y. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell, 2004, 119(7): 941–953. <\p> [54] Tsukada Y, Fang J, Erdjument-Bromage H, Warren ME, Borchers CH, Tempst P, Zhang Y. Histone demethylation by a family of JmjC domain-containing proteins. Nature, 2006, 439(7078): 811–816. <\p> [55] Lu FL, Li GL, Cui X, Liu CY, Wang XJ, Cao XF. Com-parative analysis of JmjC domain-containing proteins re-veals the potential histone demethylases in Arabidopsis and Rice. J Integr Plant Biolournal, 2008, 50(7): 886–896. <\p> [56] Berger SL. The complex language of chromatin regulation during transcription. Nature, 2007, 447(7143): 407–412. <\p> [57] Martin C, Zhang Y. The diverse functions of histone lysine methylation. Nat Rev Mol Cell Biol, 2005, 6(11): 838–849. <\p> [58] Johnson L, Mollah S, Garcia BA, Muratore TL, Sha-banowitz J, Hunt DF, Jacobsen SE. Mass spectrometry analysis of Arabidopsis histone H3 reveals distinct com-binations of post-translational modifications. Nucleic Ac-ids Res, 2004, 32(22): 6511–6518. <\p> [59] Bernatavichute YV, Zhang XY, Cocus S, Pellegrini M, Jacobsen SE. Genome-wide association of histone H3 ly-sine nine methylation with CHG DNA methylation in Arabidopsis thaliana. PLoS One, 2008, 3(9): e3156. <\p> [60] Law JA, Jacobsen SE. Establishing, maintaining and modifying DNA methylation patterns in plants and ani-mals. Nat Rev Genet, 2010, 11(3): 204–220. <\p> [61] Wang XF, Elling AA, Li XY, Li N, Peng ZY, He GM, Sun H, Qi YJ, Liu XS, Deng XW. Genome-Wide and Or-gan-Specific Landscapes of Epigenetic Modifications and their relationships to mRNA and small RNA transcriptomes in maize. Plant Cell, 2009, 21(4): 1053–1069. <\p> [62] 夏志强, 何奕昆, 鲍时来, 种康. 植物开花的组蛋白甲基化调控分子机理. 植物学通报, 2007, 24(3): 275–283. <\p> [63] Jean FE, Kovac KA, Jaligot E, Sheldon CC, James Pea-cock W, Dennis ES. The downregulation of FLOWERING LOCUS C (FLC) expression in plants with low levels of DNA methylation and by vernalization occurs by distinct mechanisms. Plant J, 2005, 44(3) 420–432. <\p> [64] Sims III RJ, Nishioka K, Reinberg D. Histone lysine me-thylation: a signature for chromatin function. Trends Genet, 2003, 19(11): 629–639. <\p> [65] Bannister AJ, Zegerman P, Partridge JF, Miska EA, Tho-mas JO, Allshire RC, Kouzarides T. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature, 2001, 410(6824): 120–124. <\p> [66] Cao R, Wang LJ, Wang HB, Xia L, Erdjument-Bromage H, Tempst P, Jones RS, Zhang Y. Role of histone H3 lysine 27 methylation in polycomb-group silencing. Science, 2002, 298(5595): 1039–1043. <\p> [67] He YH, Doyle MR, Amasino RM. PAF1-complex- me-diated histone methylation of FLOWERING LOCUS C chromatin is required for the vernalization-responsive, winter-annual habit in Arabidopsis. Genes Dev, 2004, 18(22): 2774–2784. <\p> [68] Zhao Z, Yu Y, Meyer D, Wu CJ, Shen WH. Prevention of early flowering by expression of FLOWERING LOCUS C requires methylation of histone H3 K36. Nat Cell Biol, 2005, 7(12): 1256–1260. <\p> [69] Sung S, Amasino RM. Vernalization in Arabidopsis thaliana is mediated by the PHD finger protein VIN3. Na-ture, 2004, 427(6970): 159–164. <\p> [70] Yu CW, Liu XC, Luo M, Chen CY, Lin XD, Tian G, Lu Q, Cui YH, Wu KQ. HISTONE DEACETYLASE6 interacts with FLOWERING LOCUS D and regulates flowering in Arabidopsis. Plant Physiol, 2011, 156(1): 173–184. <\p> [71] Périlleux C, Pieltain A, Jacquemin G, Bouché F, Detry N, D'Aloia M, Thiry L, Aljochim P, Delansnay M, Mathieu AS, Lutts S, Tocquin P. A root chicory MADS box sequence and the Arabidopsis flowering repressor FLC share common features that suggest conserved function in vernalization and de-vernalization responses. Plant J, 2013, 75(3): 390–402. <\p> [72] Ding Y, Avramova Z, Fromm M. The Arabidopsis trithorax-like factor ATX1 functions in dehydration stress responses via ABA-dependent and ABA-independent pathways. Plant J, 2011, 66(5): 735–744. <\p> [73] Ding Y, Lapko H, Ndamukong I, Xia YN, Al-Abdallat A, Lalithambika S, Sadder M, Saleh A, Fromm M, Riethoven JJ, Lu GQ, Avramova Z. The Arabidopsis chromatin modifier ATX1, the myotubularin-like AtMTM, and the re-sponse to drought. Plant Signal Behav, 2009, 4(11): 1049–1058. <\p> [74] Ndamukong I, Jones DR, Lapko H, Divecha N, Avramova Z. Phosphatidylinositol 5-phosphate links dehydration stress to the activity of ARABIDOPSIS TRITHORAX- LIKE factor ATX1. PLoS One, 2010, 5(10): e13396. <\p> [75] Taji T, Ohsumi C, Iuchi S, Seki M, Kasuga M, Kobayashi M, Yamaguchi-Shinozaki K, Shinozaki K. Important roles of drought- and cold-inducible genes for galactinol syn-thase in stress tolerance in Arabidopsis thaliana. Plant J, 2002, 29(4): 417–426. <\p> [76] Kwon CS, Lee D, Choi G, Chung WI. Histone occu-pancy-dependent and -independent removal of H3K27 trimethylation at cold-responsive genes in Arabidopsis. Plant J, 2009, 60(1): 112–121. <\p> [77] Tsuji H, Saika H, Tsutsumi N, Hirai A, Nakazono M. Dy-namic and reversible changes in histone H3-Lys4 methyla-tion and H3 acetylation occurring at submergence-inducible genes in rice. Plant Cell Physiol, 2006, 47(7): 995–1003. <\p> [78] Berr A, McCallum EJ, Alioua A, Heintz D, Heintz T, Shen WH. Arabidopsis histone methyltransferase SET DOMAIN GROUP8 mediates induction of the jasmonate/ethylene pathway genes in plant defense response to necrotrophic fungi. Plant Physiol, 2010, 154(3): 1403–1414. <\p> [79] Yu H, Zhu SS, Zhou B, Xue LL, Han JDJ. Inferring causal relationships among different histone modifications and gene expression. Genome Res, 2008, 18(8): 1314–1324. <\p> [80] Zhou JL, Wang XF, He K, Charron JB, Elling AA, Deng XW. Genome-wide profiling of histone H3 lysine 9 acety-lation and dimethylation in Arabidopsis reveals correlation between multiple histone marks and gene expression. Plant Mol Biol, 2010, 72(6): 585–595.<\p> |
[1] | 宁椿游,何梦楠,唐茜子,朱庆,李明洲,李地艳. 基于Hi-C技术哺乳动物三维基因组研究进展[J]. 遗传, 2019, 41(3): 215-233. |
[2] | 施剑,李艳明,方向东. 长链非编码RNA通过细胞核高级结构调控真核基因表达及其临床意义[J]. 遗传, 2017, 39(3): 189-199. |
[3] | 路畅, 黄银花. 动物长链非编码RNA研究进展[J]. 遗传, 2017, 39(11): 1054-1065. |
[4] | 翟亚男, 许泉, 郭亚, 吴强. 原钙粘蛋白基因簇调控区域中成簇的CTCF结合位点分析[J]. 遗传, 2016, 38(4): 323-336. |
[5] | 黄小庆,李丹丹,吴娟. 植物长链非编码RNA研究进展[J]. 遗传, 2015, 37(4): 344-359. |
[6] | 张韬 杨足君. 植物基因组DNase I超敏感位点的研究进展[J]. 遗传, 2013, 35(7): 867-874. |
[7] | 夏天,肖丙秀,郭俊明. 长链非编码RNA的作用机制及其研究方法[J]. 遗传, 2013, 35(3): 269-280. |
[8] | 秦丹 徐存拴. 非编码DNA序列的功能及其鉴定[J]. 遗传, 2013, 35(11): 1253-1264. |
[9] | 李泽琴,李静晓,张根发. 植物抗坏血酸过氧化物酶的表达调控以及对非生物胁迫的耐受作用[J]. 遗传, 2013, 35(1): 45-54. |
[10] | 罗茂,张志明,高健,曾兴,潘光堂. miR319在植物器官发育中的调控作用[J]. 遗传, 2011, 33(11): 1203-1211. |
[11] | 孟雅楠,孟丽军,宋亚娟,刘美玲,张秀军. 小RNA分子与精子发生调控[J]. 遗传, 2011, 33(1): 9-16. |
[12] | 程龙,黄翠芬,叶棋浓. 乳腺癌中雌激素受体α表达水平调节的分子机制[J]. 遗传, 2010, 32(3): 191-197. |
[13] | 丁艳菲,王光钺,傅亚萍,朱诚. miR398在植物逆境胁迫应答中的作用[J]. 遗传, 2010, 32(2): 129-134. |
[14] | 杨文杰,吴燕民,唐益雄. 大豆转录因子基因GmMYBJ6的表达及功能分析[J]. 遗传, 2009, 31(6): 645-653. |
[15] | 杜婷婷,黄秋花. 组蛋白赖氨酸甲基化在表观遗传调控中的作用[J]. 遗传, 2007, 29(4): 387-392. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号
总访问:,今日访问:,当前在线: