遗传 ›› 2013, Vol. 35 ›› Issue (1): 35-44.doi: 10.3724/SP.J.1005.2013.00035
冯俊, 李光, 王义权
收稿日期:
2012-06-30
修回日期:
2012-09-10
出版日期:
2013-01-20
发布日期:
2013-01-25
通讯作者:
王义权
E-mail:wangyq@xmu.edu.cn
基金资助:
国家自然科学基金项目(编号:30830023; No. 31071110)和教育部博士点基金(编号:20110121120002)资助
FENG Jun, LI Guang, WANG Yi-Quan
Received:
2012-06-30
Revised:
2012-09-10
Online:
2013-01-20
Published:
2013-01-25
摘要: 生物体基因组中除了编码序列之外, 还存在大量的非编码调控序列。比较基因组学研究发现:脊椎动物、尾索动物、头索动物、果蝇、线虫等基因组中存在保守的非编码调控序列。这些非编码保守元件通常分布在与转录调控发育相关的基因上下游区域, 作为基因调控网络核心的一部分, 常常在基因表达过程中扮演转录增强子的角色。文章总结了近年来有关后生动物非编码保守元件的发现和主要特点, 并进一步就非编码保守元件在大规模基因组倍增之后的演化及其在生物躯体图式进化过程中的影响进行了综述。
冯俊,李光,王义权. 后生动物非编码保守元件[J]. 遗传, 2013, 35(1): 35-44.
FENG Jun LI Guang WANG Yi-Quan. Research progress of conserved non-coding elements in metazoan[J]. HEREDITAS, 2013, 35(1): 35-44.
[1] Zhang LG, Kasif S, Cantor CR, Broude NE. GC/AT-content spikes as genomic punctuation marks. Proc Natl Acad Sci USA, 2004, 101(48): 16855-16860.[2] Glazko GV, Koonin EV, Rogozin IB, Shabalina SA. A significant fraction of conserved noncoding DNA in human and mouse consists of predicted matrix attachment regions. Trends Genet, 2003, 19(3): 119-124.[3] Borsch T, Quandt D, Koch M. Molecular evolution and phylogenetic utility of non-coding DNA: applications from species to deep level questions. Plant Syst Evol, 2009, 282(3-4): 107- 108.[4] Ishibashi M, Noda AO, Sakate R, Imanishi T. Evolutionary growth process of highly conserved sequences in vertebrate genomes. Gene, 2012, 504(1): 1-5.[5] Vavouri T, Lehner B. Conserved noncoding elements and the evolution of animal body plans. Bioessays, 2009, 31(7): 727-735.[6] Beaster-Jones L. Cis-regulation and conserved non-coding elements in amphioxus. Brief Funct Genomics, 2012, 11(2): 118-130.[7] King DC, Taylor J, Elnitski L, Chiaromonte F, Miller W, Hardison RC. Evaluation of regulatory potential and conservation scores for detecting cis-regulatory modules in aligned mammalian genome sequences. Genome Res, 2005, 15(8): 1051-1060.[8] Su J, Teichmann SA, Down TA. Assessing computational methods of cis-regulatory module prediction. PLoS Comput Biol, 2010, 6(12): e1001020.[9] Woolfe A, Goodson M, Goode DK, Snell P, McEwen GK, Vavouri T, Smith SF, North P, Callaway H, Kelly K, Walter K, Abnizova I, Gilks W, Edwards YJK, Cooke JE, Elgar G. Highly conserved non-coding sequences are associated with vertebrate development. PLoS Biol, 2005, 3(1): e7.[10] Thomas JW, Touchman JW, Blakesley RW, Bouffard GG, Beckstrom-Sternberg SM, Margulies EH, Blanchette M, Siepel AC, Thomas PJ, McDowell JC, Maskeri B, Hansen NF, Schwartz MS, Weber RJ, Kent WJ, Karolchik D, Bruen TC, Bevan R, Cutler DJ, Schwartz S, Elnitski L, Idol JR, Prasad AB, Lee-Lin SQ, Maduro VVB, Summers TJ, Portnoy ME, Dietrich NL, Akhter N, Ayele K, Benjamin B, Cariaga K, Brinkley CP, Brooks SY, Granite S, Guan X, Gupta J, Haghighi P, Ho SL, Huang MC, Karlins E, Laric PL, Legaspi R, Lim MJ, Maduro QL, Masiello CA, Mastrian SD, McCloskey JC, Pearson R, Stantripop S, Tiongson EE, Tran JT, Tsurgeon C, Vogt JL, Walker MA, Wetherby KD, Wiggins LS, Young AC, Zhang LH, Osoegawa K, Zhu B, Zhao B, Shu CL, De Jong PJ, Lawrence CE, Smit AF, Chakravarti A, Haussler D, Green P, Miller W, Green ED. Comparative analyses of multi-species sequences from targeted genomic regions. Nature, 2003, 424(6950): 788-793.[11] Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou MM, Rosenbloom K, Clawson H, Spieth J, Hillier LW, Richards S, Weinstock GM, Wilson RK, Gibbs RA, Kent WJ, Miller W, Haussler D. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res, 2005, 15(8): 1034-1050.[12] Drake JA, Bird C, Nemesh J, Thomas DJ, Newton-Cheh C, Reymond A, Excoffier L, Attar H, Antonarakis SE, Dermitzakis ET, Hirschhorn JN. Conserved noncoding sequences are selectively constrained and not mutation cold spots. Nat Genet, 2005, 38(2): 223-227.[13] Frazer KA, Sheehan JB, Stokowski RP, Chen XY, Hosseini R, Cheng JF, Fodor SPA, Cox DR, Patil N. Evolutionarily conserved sequences on human chromosome 21. Genome Res, 2001, 11(10): 1651- 1659.[14] Margulies EH, Blanchette M, NISC Comparative Sequencing Program, Haussler D, Green ED. Identification and characterization of multi-species conserved sequences. Genome Res, 2003, 13(12): 2507-2518.[15] Haeussler M, Joly JS. When needles look like hay: how to find tissue-specific enhancers in model organism genomes. Dev Biol, 2011, 350(2): 239-254.[16] Moghadam HK, Ferguson MM, Danzmann RG. Comparative genomics and evolution of conserved noncoding elements (CNE) in rainbow trout. BMC Genomics, 2009, 10(1): 278.[17] Bejerano G, Pheasant M, Makunin I, Stephen S, Kent WJ, Mattick JS, Haussler D. Ultraconserved elements in the human genome. Science, 2004, 304(5675): 1321-1325.[18] Katzman S, Kern AD, Bejerano G, Fewell G, Fulton L, Wilson RK, Salama SR, Haussler D. Human genome ul-traconserved elements are ultraselected. Science, 2007, 317(5840): 915.[19] McLean C, Bejerano G. Dispensability of mammalian DNA. Genome Res, 2008, 18(11): 1743 -1751.[20] Sandelin A, Bailey P, Bruce S, Engström PG, Klos JM, Wasserman WW, Ericson J, Lenhard B. Arrays of ultraconserved non-coding regions span the loci of key developmental genes in vertebrate genomes. BMC Genomics, 2004, 5(1): 99.[21] McEwen GK, Woolfe A, Goode D, Vavouri T, Callaway H, Elgar G. Ancient duplicated conserved noncoding elements in vertebrates: A genomic and functional analysis. Genome Res, 2006, 16(4): 451-465[22] Vavouri T, McEwen GK, Woolfe A, Gilks WR, Elgar G. Defining a genomic radius for long-range enhancer action: duplicated conserved non-coding elements hold the key. Trends Genet, 2006, 22(1): 5-10.[23] Pennacchio LA, Ahituv N, Moses AM, Prabhakar S, Nobrega MA, Shoukry M, Minovitsky S, Dubchak I, Holt A, Lewis KD, Plajzer-Frick I, Akiyama J, De Val S, Afzal V, Black BL, Couronne O, Eisen MB, Visel A, Rubin EM. In vivo enhancer analysis of human conserved non-coding sequences. Nature, 2006, 444(7118): 499-502.[24] Navratilova P, Fredman D, Hawkins TA, Turner K, Lenhard B, Becker TS. Systematic human/zebrafish comparative identification of cis-regulatory activity around vertebrate developmental transcription factor genes. Dev Biol, 2009, 327(2): 526-540.[25] Wang W, Zhong J, Su B, Zhou Y, Wang YQ. Comparison of Pax1/9 locus reveals 500-Myr-old syntenic block and evolutionary conserved noncoding regions. Mol Biol Evol, 2007, 24(3): 784- 791.[26] Holland LZ, Albalat R, Azumi K, Benito-Gutiérrez È, Blow MJ, Bronner-Fraser M, Brunet F, Butts T, Candiani S, Dishaw LJ, Ferrier DEK, Garcia-Fernàndez J, Gibson- Brown JJ, Gissi C, Godzik A, Hallböök F, Hirose D, Hosomichi K, Ikuta T, Inoko H, Kasahara M, Kasamatsu J, Kawashima T, Kimura A, Kobayashi M, Kozmik Z, Kubokawa K, Laudet V, Litman GW, McHardy AC, Meulemans D, Nonaka M, Olinski RP, Pancer Z, Pennacchio LA, Pestarino M, Rast JP, Rigoutsos I, Robinson-Rechavi M, Roch G, Saiga H, Sasakura Y, Satake M, Satou Y, Schubert M, Sherwood N, Shiina T, Takatori N, Tello J, Vopalensky P, Wada S, Xu AL, Ye YZ, Yoshida K, Yoshizaki F, Yu JK, Zhang Q, Zmasek CM, de Jong PJ, Osoegawa K, Putnam NH, Rokhsar DS, Satoh N, Holland PWH. The amphioxus genome illuminates vertebrate origins and cephalochordate biology. Genome Res, 2008, 18(7): 1100-1111.[27] Hufton AL, Mathia S, Braun H, Georgi U, Lehrach H, Vingron M, Poustka AJ, Panopoulou G. Deeply conserved chordate noncoding sequences preserve genome synteny but do not drive gene duplicate retention. Genome Res, 2009, 19(11): 2036-2051.[28] Vavouri T, Walter K, Gilks WR, Lehner B, Elgar G. Parallel evolution of conserved non-coding elements that target a common set of developmental regulatory genes from worms to humans. Genome Biol, 2007, 8(2): R15.[29] Glazov EA, Pheasant M, McGraw EA, Bejerano G, Mattick JS. Ultraconserved elements in insect genomes: a highly conserved intronic sequence implicated in the control of homothorax mRNA splicing. Genome Res, 2005, 15(6): 800-808.[30] Walter K, Abnizova I, Elgar G, Gilks WR. Striking nucleotide frequency pattern at the borders of highly conserved vertebrate non-coding sequences. Trends Genet, 2005, 21(8): 436-440.[31] Kamath RS, Fraser AG, Dong Y, Poulin G, Durbin R, Gotta M, Kanapin A, Le Bot N, Moreno S, Sohrmann M, Welchman DP, Zipperlen P, Ahringer J. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature, 2003, 421(6920): 231-237.[32] Kuntz SG, Schwarz EM, DeModena JA, De Buysscher T, Trout D, Shizuya H, Sternberg PW, Wold BJ. Multigenome DNA sequence conservation identifies Hox cis-regulatory elements. Genome Res, 2008, 18(12): 1955-1968.[33] Peterson BK, Hare EE, Iyer VN, Storage S, Conner L, Papaj DR, Kurashima R, Jang E, Eisen MB. Big genomes facilitate the comparative identification of regulatory elements. PLoS One, 2009, 4(3): e4688.[34] Delsuc F, Brinkmann H, Chourrout D, Philippe H. Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature, 2006, 439(7079): 965-968.[35] Blair JE, Hedges SB. Molecular phylogeny and divergence times of deuterostome animals. Mol Biol Evol, 2005, 22(11): 2275-2284.[36] Ohno S. Evolution by Gene Duplication. Berlin, New York: Springer-Verlag, 1970.[37] Amemiya CT, Prohaska SJ, Hill-Force A, Cook A, Wasserscheid J, Ferrier DE, Pascual-Anaya J, Garcia-Fernàndez J, Dewar K, Stadler PF. The amphioxus Hox clus-ter: characterization, comparative genomics, and evolution. J Exp Zool B Mol Dev Evol, 2008, 310B(5): 465-477.[38] Pascual-Anaya J, D'Aniello S, Garcia-Fernàndez J. Unex-pectedly large number of conserved noncoding regions within the ancestral chordate Hox cluster. Dev Genes Evol, 2008, 218 (11-12): 591-597.[39] Putnam NH, Butts T, Ferrier DE, Furlong RF, Hellsten U, Kawashima T, Robinson-Rechavi M, Shoguchi E, Terry A, Yu JK, Benito-Gutiérrez EL, Dubchak I, Garcia-Fernàndez J, Gibson-Brown JJ, Grigoriev IV, Horton AC, de Jong PJ, Jurka J, Kapitonov VV, Kohara Y, Kuroki Y, Lindquist E, Lucas S, Osoegawa K, Pennacchio LA, Salamov AA, Satou Y, Sauka-Spengler T, Schmutz J, Shin-I T, Toyoda A, Bronner-Fraser M, Fujiyama A, Holland LZ, Holland PW, Satoh N, Rokhsar DS. The amphioxus genome and the evolution of the chordate karyotype. Nature, 2008, 453(7198): 1064-1071.[40] Punnamoottil B, Herrmann C, Pascual-Anaya J, D'Aniello S, Garcia-Fernàndez J, Akalin A, Becker TS, Rinkwitz S. Cis-regulatory characterization of sequence con-servation surrounding the Hox4 genes. Dev Biol, 2010, 340(2): 269-282.[41] Skromne I, Thorsen D, Hale M, Prince VE, Ho RK. Re-pression of the hindbrain developmental program by Cdx factors is required for the specification of the vertebrate spinal cord. Development, 2007, 134(11): 2147-2158.[42] Bejerano G, Lowe CB, Ahituv N, King B, Siepel A, Salama SR, Rubin EM, Kent WJ, Haussler D. A distal enhancer and an ultraconserved exon are derived from a novel retroposon. Nature, 2006, 441(7089): 87-90.[43] Stephen S, Pheasant M, Makunin IV, Mattick JS. Large-scale appearance of ultraconserved elements in tetrapod genomes and slowdown of the molecular clock. Mol Biol Evol, 2008, 25(2): 402-408.[44] Sun H, Skogerbø G, Chen RS. Conserved distances between vertebrate highly conserved elements. Hum Mol Genet, 2006, 15(19): 2911-2922.[45] Li XR, Tan LB, Wang LG, Hu SN, Sun CQ. Isolation and characterization of conserved non-coding sequences among rice (Oryza sativa L.) paralogous regions. Mol Genet Genomics, 2009, 281(1): 11-18.[46] Woolfe A, Goode DK, Cooke J, Callaway H, Smith S, Snell P, McEwen GK, Elgar G. CONDOR: a database resource of developmentally associated conserved non-coding elements. BMC Dev Biol, 2007, 7(1): 100.[47] Minovitsky S, Stegmaier P, Kel A, Kondrashov AS, Dubchak I. Short sequence motifs, overrepresented in mammalian conserved non-coding sequences. BMC Genomics, 2007, 8(1): 378.[48] Woolfe A, Elgar G. Comparative genomics using Fugu reveals insights into regulatory subfunction-alization. Genome Biol, 2007, 8(4): R53.[49] Tsang WH, Shek KF, Lee TY, Chow KL. An evolutionarily conserved nested gene pair-Mab21 and Lrba/Nbea in metazoan. Genomics, 2009, 94(3): 177-187.[50] Taher L, Ovcharenko I. Variable locus length in the human genome leads to ascertainment bias in functional inference for non-coding elements. Bioinformatics, 2009, 25(5): 578-584.[51] Farré D, Bellora N, Mularoni L, Messeguer X, Albà MM. Housekeeping genes tend to show reduced upstream sequence conservation. Genome Biol, 2007, 8(7): R140.[52] Blanchette M, Bataille AR, Chen X, Poitras C, Laganière J, Lefèbvre C, Deblois G, Giguère V, Ferretti V, Bergeron D, Coulombe B, Robert F. Genome-wide computational pre-diction of transcriptional regulatory modules reveals new insights into human gene expression. Genome Res, 2006, 16(5): 656-668.[53] Ovcharenko I, Loots GG, Nobrega MA, Hardison RC, Miller W, Stubbs L. Evolution and functional classification of vertebrate gene deserts. Genome Res, 2005, 15(1): 137-145.[54] Kimura-Yoshida C, Kitajima K, Oda-Ishii I, Tian E, Suzuki M, Yamamoto M, Suzuki T, Kobayashi M, Aizawa S, Matsuo I. Characterization of the pufferfish Otx2 cis-regulators reveals evolutionarily conserved genetic mechanisms for vertebrate head specification. Development, 2004, 131(1): 57-71.[55] Nobrega MA, Ovcharenko I, Afzal V, Rubin EM. Scanning human gene deserts for long-range enhancers. Science, 2003, 302(5644): 413.[56] Izumi K, Aramaki M, Kimura T, Naito Y, Udaka T, Uchikawa M, Kondoh H, Suzuki H, Cho G, Okada Y, Takahashi T, Golden JA, Kosaki K. Identification of a prosencephalic-specific enhancer of SALL1: comparative genomic approach using the chick embryo. Pediatr Res, 2007, 61(6): 660-665.[57] Uchikawa M, Ishida Y, Takemoto T, Kamachi Y, Kondoh H. Functional analysis of chicken Sox2 enhancers highlights an array of diverse regulatory elements that are conserved in mammals. Dev Cell, 2003, 4(4): 509-519.[58] Lettice LA, Heaney SJ, Purdie LA, Li L, de Beer P, Oostra BA, Goode D, Elgar G, Hill RE, de Graaff E. A long-range Shh enhancer regulates expression in the developing limb and fin and is associated with preaxial polydac-tyly. Hum Mol Genet, 2003, 12(14): 1725-1735.[59] Werner T, Hammer A, Wahlbuhl M, Bösl MR, Wegner M. Multiple conserved regulatory elements with overlapping functions determine Sox10 expression in mouse embryogenesis. Nucleic Acids Res, 2007, 35(19): 6526-6538.[60] Ertzer R, Müller F, Hadzhiev Y, Rathnam S, Fischer N, Rastegar S, Strähle U. Cooperation of sonic hedgehog enhancers in midline expression. Dev Biol, 2007, 301(2): 578-589.[61] Ochi H, Tamai T, Nagano H. Kawaguchi A, Sudou N, Ogino H. Evolution of a tissue-specific silencer underlies divergence in the expression of pax2 and pax8 paralogues. Nat Commun, 2012, 3: 848.[62] Chi X, Chatterjee PK, Wilson W III, Zhang SX, Demayo FJ, Schwartz RJ. Complex cardiac Nkx2-5 gene expression activated by noggin-sensitive enhancers followed by chamber-specific modules. Proc Natl Acad Sci USA, 2005, 102(38): 13490-13495.[63] Farhadi HF, Lepage P, Forghani R, Friedman HC, Orfali W, Jasmin L, Miller W, Hudson TJ, Peterson AC. A combinatorial network of evolutionarily conserved myelin basic protein regulatory sequences confers distinct glial-specific phenotypes. J Neurosci, 2003, 23(32): 10214-10223.[64] Maconochie MK, Nonchev S, Studer M, Chan SK, Pöpperl H, Sham MH, Mann RS, Krumlauf R. Cross- regulation in the mouse HoxB complex: the expression of Hoxb2 in rhombomere 4 is regulated by Hoxb1. Genes Dev, 1997, 11(14): 1885-1895.[65] Aparicio S, Morrison A, Gould A, Gilthorpe J, Chaudhuri C, Rigby P, Krumlauf R, Brenner S. Detecting conserved regulatory elements with the model genome of the Japanese puffer fish, Fugu rubripes. Proc Natl Acad Sci USA, 1995, 92(5): 1684-1688.[66] Khandekar M, Suzuki N, Lewton J, Yamamoto M, Engel JD. Multiple, distant Gata2 enhancers specify temporally and tissue-specific patterning in the developing urogenital system. Mol Cell Biol, 2004, 24(23): 10263-10276.[67] Sakuraba Y, Kimura T, Masuya H, Noguchi H, Sezutsu H, Takahasi KR, Toyoda A, Fukumura R, Murata T, Sakaki Y, Yamamura M, Wakana S, Noda T, Shiroishi T, Gondo Y. Identification and characterization of new long conserved noncoding sequences in vertebrates. Mamm Genome, 2008, 19(10-12): 703-712.[68] Kato M, Sekine A, Ohnishi Y, Johnson TA, Tanaka T, Nakamura Y, Tsunoda T. Linkage disequilibrium of evolutionarily conserved regions in the human genome. BMC Genomics, 2006, 7 (1): 326.[69] Lowe CB, Kellis M, Siepel A, Raney BJ, Clamp M, Salama SR, Kingsley DM, Lindblad-Toh K, Haussler D. Three periods of regulatory innovation during vertebrate evolution. Science, 2011, 333(6045): 1019-1024.[70] Goode DK, Callaway HA, Cerda GA, Lewis KE, Elgar G. Minor change, major difference: divergent functions of highly conserved cis-regulatory elements subsequent to whole genome duplication events. Development, 2011, 138(5): 879-884.[71] Doolittle WF, Sapienza C. Selfish genes, the phenotype paradigm and genome evolution. Nature, 1980, 284(5757): 601-603.[72] Xie XH, Kamal M, Lander ES. A family of conserved non-coding elements derived from an ancient transposable element. Proc Natl Acad Sci USA, 2006, 103(31): 11659-11664.[73] Erwin DH, Davidson EH. The last common bilaterian an-cestor. Development, 2002, 129 (13): 3021-3032.[74] Davidson EH, Erwin DH. Gene regulatory networks and the evolution of animal body plans. Science, 2006, 311(5762): 796-800.[75] Erwin DH, Davidson EH. The evolution of hierarchical gene regulatory networks. Nat Rev Genet, 2009, 10(2): 141-148.[76] Force A, Lynch M, Pickett FB, Amores A, Yan YL, Postlethwait J. Preservation of duplicate genes by complementary, degenerative mutations. Genetics, 1999, 151(4): 1531-1545.[77] Jiménez-Delgado S, Pascual-Anaya J, Garcia-Fernàndez J. Implications of duplicated cis-regulatory elements in the evolution of metazoans: the DDI model or how simplicity begets novelty. Brief Funct Genomic Pro-teomic, 2009, 8(4): 266-275.[78] Benko S, Fantes JA, Amiel J, Kleinjan DJ, Thomas S, Ramsay J, Jamshidi N, Essafi A, Heaney S, Gordon CT, McBride D, Golzio C, Fisher M, Perry P, Abadie V, Ayuso C, Holder-Espinasse M, Kilpatrick N, Lees MM, Picard A, Temple IK, Thomas P, Vazquez MP, Vekemans M, Roest Crollius H, Hastie ND, Munnich A, Etchevers HC, Pelet A, Farlie PG, Fitzpatrick DR, Lyonnet S. Highly conserved non-coding elements on either side of SOX9 associated with Pierre Robin sequence. Nat Genet, 2009, 41(3): 359-364.[79] Ott CE, Hein H, Lohan S, Hoogeboom J, Foulds N, Grunhagen J, Stricker S, Villavicencio-Lorini P, Klopocki E, Mundlos S. Microduplications upstream of MSX2 are associated with a phenocopy of cleidocranial dysplasia. J Med Genet, 2012, 49(7): 437-441. |
[1] | 吴志强, 米泽云. 超级增强子在肿瘤研究中的进展[J]. 遗传, 2019, 41(1): 41-51. |
[2] | 李俊涛,赵薇,李丹丹,冯静,巴贵,宋天增,张红平. miR-101a靶向EZH2促进山羊骨骼肌卫星细胞的分化[J]. 遗传, 2017, 39(9): 828-836. |
[3] | 程霄,杨琼,谭镇东,谭娅,蒲红州,赵雪,张顺华,朱砺. 增强子RNA研究现状[J]. 遗传, 2017, 39(9): 784-797. |
[4] | 秦辰雨, 蔡禾, 卿涵睿, 李利, 张红平. 长链非编码RNA H19对哺乳动物肌肉生长发育的调控[J]. 遗传, 2017, 39(12): 1150-1157. |
[5] | 孙长斌, 张曦. 超级增强子研究进展[J]. 遗传, 2016, 38(12): 1056-1068. |
[6] | 李雪娟, 黄原, 雷富民. 山鹧鸪属鸟类线粒体基因组的比较及系统发育研究[J]. 遗传, 2014, 36(9): 912-920. |
[7] | 孙博渊, 涂剑波, 李英, 杨明耀. 基因及其顺式调控元件在动物表型进化中的作用[J]. 遗传, 2014, 36(6): 525-535. |
[8] | 高运臻,潘玉春. 转录因子CCAAT增强子结合蛋白β(C/EBP β)的研究进展[J]. 遗传, 2011, 33(3): 198-206. |
[9] | 潘增祥,许丹,张金璧,林飞,吴宝江,刘红林 . 基于直向同源序列的比较基因组学研究[J]. 遗传, 2009, 31(5): 457-457―463. |
[10] | 田靖,赵志虎,陈惠鹏. 人类基因组中的保守非编码元件[J]. 遗传, 2009, 31(11): 1067-1076. |
[11] | 侯妍妍,应晓敏,李伍举. microRNA计算发现方法的研究进展[J]. 遗传, 2008, 30(6): 687-696. |
[12] | 王源秀,徐立安,黄敏仁,许远. 林木比较基因组学研究进展[J]. 遗传, 2007, 29(10): 1199-1199―1206. |
[13] | 王健,周建光,黄翠芬. PSA启动子结构和表达调控研究进展[J]. 遗传, 2004, 26(5): 739-744. |
[14] | 岳志芹,孔杰,戴继勋. 水产动物遗传连锁图谱的研究现状及应用展望[J]. 遗传, 2004, 26(1): 97-102. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: