[1] Wu CT, Morris JR. Genes, genetics, and epigenetics: a corre-spondence. Science, 2001, 293(5532): 1103-1105.[2] Weinhold B. Epigenetics: the science of change. Environ Health Perspect, 2006, 114(3): A160-A167.[3] Lloyd V. Parental imprinting in Drosophila. Genetica, 2000, 109(1-2): 35-44.[4] Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet, 2002, 3(6): 415-428.[5] Field LM, Lyko F, Mandrioli M, Prantera G. DNA methylation in insects. Insect Mol Biol, 2004, 13(2): 109-115.[6] Marhold J, Rothe N, Pauli A, Mund C, Kuehle K, Brueckner B, Lyko F. Conservation of DNA methylation in dipteran insects. Insect Mol Biol, 2004, 13(2): 117-123.[7] Vanyushin BF. DNA methylation and epigenetics. Russ J Genet, 2006, 42(9): 985-997.[8] Margot JB, Cardoso MC, Leonhardt H. Mammalian DNA methyltransferases show different subnuclear distributions. J Cell Biochem, 2001, 83(3): 373-379.[9] Gruenbaum Y, Stein R, Cedar H, Razin A. Methylation of CpG sequences in eukaryotic DNA. FEBS Lett, 1981, 124(1): 67-71.[10] Adams RLP. Chapter 3 DNA methylation. Principles of Medical Biology, 1996, 5: 33-66.[11] Vogt G, Huber M, Thiemann M, van den Boogaart G, Schmitz OJ, Schubart CD. Production of different phenotypes from the same genotype in the same environment by developmen-tal variation. J Exp Biol, 2008, 211(4): 510-523.[12] Lyko F. DNA methylation learns to fly. Trends Genet, 2001, 17(4): 169-172.[13] Bestor TH. Cloning of a mammalian DNA methyltransferase. Gene, 1988, 74(1): 9-12.[14] Goll MG, Kirpekar F, Maggert KA, Yoder JA, Hsieh CL, Zhang XY, Golic KG, Jacobsen SE, Bestor TH. Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2. Science, 2006, 311(5759): 395-398.[15] Dong AP, Yoder JA, Zhang X, Zhou L, Bestor TH, Cheng XD. Structure of human DNMT2, an enigmatic DNA methyl-transferase homolog that displays denaturant-resistant binding to DNA. Nucl Acids Res, 2001, 29(2): 439-448.[16] Ponger L, Li WH. Evolutionary diversification of DNA methyltransferases in eukaryotic genomes. Mol Biol Evol, 2005, 22(4): 1119-1128.[17] Okano M, Xie SP, Li E. Dnmt2 is not required for de novo and maintenance methylation of viral DNA in embryonic stem cells. Nucl Acids Res, 1998, 26(11): 2536-2540.[18] Rai K, Chidester S, Zavala CV, Manos EJ, James SR, Karpf AR, Jones DA, Cairns BR. Dnmt2 functions in the cytoplasm to promote liver, brain, and retina development in zebrafish. Genes Dev, 2007, 21(3): 261-266.[19] Okano M, Bell DW, Haber DA, Li E. DNA mathyltrans-ferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell, 1999, 99(3): 247-257.[20] Ehrlich M, Jackson K, Weemaes C. Immunodeficiency, centromeric region instability, facial anomalies syndrome (ICF). Orphanet J Rare Dis, 2006, 1(1): 2-10.[21] Bird AP, Wolffe AP. Methylation-induced repression-belts, braces, and chromatin. Cell, 1999, 99(5): 451-454.[22] Ng HH, Adrian B. DNA methylation and chromatin modification. Curr Opin Genet Dev, 1999, 9(2): 158-163.[23] Amir RE, van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet, 1999, 23(2): 185-188.[24] Ruzov A, Dunican DS, Prokhortchouk A, Pennings S, Stancheva I, Prokhortchouk E, Meehan RR. Kaiso is a genome-wide repressor of transcription that is essential for amphibian development. Development, 2004, 131(24): 6185-6194.[25] Prokhortchouk A, Hendrich B, Jørgensen H, Ruzov A, Wilm M, Georgiev G, Bird A, Prokhortchouk E. The p120 catenin partner Kaiso is a DNA methylation-dependent transcriptional represso |