遗传 ›› 2019, Vol. 41 ›› Issue (12): 1099-1109.doi: 10.16288/j.yczz.19-193
收稿日期:
2019-07-03
修回日期:
2019-10-07
出版日期:
2019-12-20
发布日期:
2019-11-18
通讯作者:
李紫聪
E-mail:lizicongcong@163.com
作者简介:
杨旭琼,硕士研究生,专业方向:动物遗传育种与繁殖。E-mail: 1814639793@qq.com
基金资助:
Xuqiong Yang, Zhenfang Wu, Zicong Li()
Received:
2019-07-03
Revised:
2019-10-07
Online:
2019-12-20
Published:
2019-11-18
Contact:
Li Zicong
E-mail:lizicongcong@163.com
Supported by:
摘要:
体细胞核移植(somatic cell nuclear transfer, SCNT)是唯一能赋予体细胞基因组全能性的生殖工程技术,对动物种质资源保存、畜牧业发展和生物医学研究等具有重大意义。尽管该技术已经取得了许多研究进展,但哺乳动物克隆胚胎的发育效率依然很低,严重限制其在畜牧业和生物医学上的应用。导致克隆胚胎发育效率低的主要原因是体细胞重编程错误或重编程不完全,主要表现为:印记基因Xist表达异常、DNA甲基化异常,组蛋白修饰异常等。本文简要介绍了体细胞核移植技术,系统总结了哺乳动物克隆胚胎发育效率低的主要影响因素,以期为提升体细胞克隆效率相关研究与实践提供理论参考。
杨旭琼, 吴珍芳, 李紫聪. 哺乳动物体细胞核移植表观遗传重编程研究进展[J]. 遗传, 2019, 41(12): 1099-1109.
Xuqiong Yang, Zhenfang Wu, Zicong Li. Advances in epigenetic reprogramming of somatic cells nuclear transfer in mammals[J]. Hereditas(Beijing), 2019, 41(12): 1099-1109.
表1
小鼠和猪SCNT胚胎发育效率的表观遗传重编程影响因素及对策"
SCNT胚胎发育效率[ | 影响SCNT胚胎发育效率 的表观遗传重编程因素 | 对策 | 结果 | |
---|---|---|---|---|
体外(囊胚率) | 体内(出生率) | |||
15% ~ | 1%~5% | Xist | KO-Xist;注射siRNA | 克隆小鼠出生率提高8~9倍[ 克隆小鼠囊胚率以及出生率提高10倍[ |
DNA甲基化 | 抑制DNMT | 克隆小鼠出生率提高5倍[ | ||
组蛋白乙酰化水平 | 添加HDACi药物 | 克隆猪囊胚率提高2倍[ 克隆小鼠囊胚率提高5~10倍[ | ||
H3K9me3 | 注射Kdm4d或联合KO-Xist; 联合注射Kdm4b和Kdm5b | 克隆小鼠出生率提高13~16倍[ 克隆小鼠囊胚率达95%[ | ||
H3K27me3 | 注射Kdm6a | 克隆小鼠囊胚率提高2倍[ |
[1] |
Sung LY, Gao S, Shen H, Yu H, Song Y, Smith SL, Chang CC, Inoue K, Kuo L, Lian J, Li A, Tian XC, Tuck DP, Weissman SM, Yang X, Cheng T . Differentiated cells are more efficient than adult stem cells for cloning by somatic cell nuclear transfer. Nat Genet, 2006,38(11):1323-1328.
doi: 10.1038/ng1895 pmid: 17013394 |
[2] |
Matoba S, Zhang Y . Somatic cell nuclear transfer reprogramming: mechanisms and applications. Cell stem Cell, 2018,23(4):471-485.
doi: 10.1016/j.stem.2018.06.018 pmid: 30033121 |
[3] |
Rideout WM 3rd, Eggan K, Jaenisch R . Nuclear cloning and epigenetic reprogramming of the genome. Science, 2001,293(5532):1093-1098.
doi: 10.1126/science.1063206 pmid: 11498580 |
[4] |
Dinnyés A, Dai Y, Jiang S, Yang X . High developmental rates of vitrified bovine oocytes following parthenogenetic activation, in vitro fertilization, and somatic cell nuclear transfer. Biol Reprod, 2000,63(2):513-518.
doi: 10.1095/biolreprod63.2.513 pmid: 10906058 |
[5] |
Kato Y, Tani T, Tsunoda Y . Cloning of calves from various somatic cell types of male and female adult, newborn and fetal cows. J Reprod Fertil, 2000,120(2):231-237.
pmid: 11058438 |
[6] |
Lee GS, Hyun SH, Kim HS, Kim DY, Lee SH, Lim JM, Lee ES, Kang SK, Lee BC, Hwang WS . Improvement of a porcine somatic cell nuclear transfer technique by optimizing donor cell and recipient oocyte preparations. Theriogenology, 2003,59(9):1949-1957.
doi: 10.1016/s0093-691x(02)01294-3 pmid: 12600732 |
[7] |
Wilmut I, Schnieke AE, Mcwhir J, Kind AJ, Campbell KHS . Viable offspring derived from fetal and adult mammalian cells. Cloning Stem Cells, 2007,9(1):3-7.
doi: 10.1089/clo.2006.0002 pmid: 17386005 |
[8] |
Inoue K, Kohda T, Sugimoto M, Sado T, Ogonuki N, Matoba S, Shiura H, Ikeda R, Mochida K, Fujii T, Sawai K, Otte AP, Tian XC, Yang X, Ishino F, Abe K, Ogura A . Impeding Xist expression from the active X chromosome improves mouse somatic cell nuclear transfer. Science, 2010,330(6003):496-499.
doi: 10.1126/science.1194174 pmid: 20847234 |
[9] |
Matoba S, Inoue K, Kohda T, Sugimoto M, Mizutani E, Ogonuki N, Nakamura T, Abe K, Nakano T, Ishino F, Ogura A . RNAi-mediated knockdown of Xist can rescue the impaired postimplantation development of cloned mouse embryos. Proc Natl Acad Sci USA, 2011,108(51):20621-20626.
doi: 10.1073/pnas.1112664108 pmid: 22065773 |
[10] |
Liu WQ, Liu XY, Wang CF, Gao YW, Gao R, Kou XC, Zhao YH, Li JY, Wu Y, Xiu WC, Wang S, Yin JQ, Liu W, Cai T, Wang H, Zhang Y, Gao SR . Identification of key factors conquering developmental arrest of somatic cell cloned embryos by combining embryo biopsy and single-cell sequencing. Cell Discov, 2016,2:16010.
doi: 10.1038/celldisc.2016.10 pmid: 27462457 |
[11] |
Matoba S, Liu Y, Lu F, Iwabuchi KA, Shen L, Inoue A, Zhang Y . Embryonic development following somatic cell nuclear transfer impeded by persisting histone methylation. Cell, 2014,159(4):884-895.
doi: 10.1016/j.cell.2014.09.055 |
[12] |
Humpherys D, Eggan K, Akutsu H, Friedman A, Hochedlinger K, Yanagimachi R, Lander ES, Golub TR, Jaenisch R . Abnormal gene expression in cloned mice derived from embryonic stem cell and cumulus cell nuclei. Proc Natl Acad Sci USA, 2002,99(20):12889-12894.
doi: 10.1073/pnas.192433399 pmid: 12235366 |
[13] |
Xue F, Tian XC, Du F, Kubota C, Taneja M, Dinnyes A, Dai Y, Levine H, Pereira LV, Yang X . Aberrant patterns of X chromosome inactivation in bovine clones. Nat Genet, 2002,31(2):216-220.
doi: 10.1038/ng900 pmid: 12032569 |
[14] |
Niemann H, Wrenzycki C, Lucas-Hahn A, Brambrink T, Kues WA, Carnwath JW . Gene expression patterns in bovine in vitro-produced and nuclear transfer-derived embryos and their implications for early development. Cloning Stem Cells, 2002,4(1):29-38.
doi: 10.1089/153623002753632020 pmid: 12006154 |
[15] |
Bourc'his D, Le Bourhis D, Patin D, Niveleau A, Comizzoli P, Renard JP, Viegas-Péquignot E . Delayed and incomplete reprogramming of chromosome methylation patterns in bovine cloned embryos. Curr Biol, 2001,11(19):1542-1546.
doi: 10.1016/s0960-9822(01)00480-8 pmid: 11591324 |
[16] |
Dean W, Santos F, Stojkovic M, Zakhartchenko V, Walter J, Wolf E, Reik W . Conservation of methylation reprogramming in mammalian development: aberrant reprogramming in cloned embryos. Proc Natl Acad Sci USA, 2001,98(24):13734-13738.
doi: 10.1073/pnas.241522698 pmid: 11717434 |
[17] |
Kang YK, Koo DB, Park JS, Choi YH, Chung AS, Lee KK, Han YM . Aberrant methylation of donor genome in cloned bovine embryos. Nat Genet, 2001,28(2):173-177.
doi: 10.1038/88903 pmid: 11381267 |
[18] |
Santos F, Zakhartchenko V, Stojkovic M, Peters A, Jenuwein T, Wolf E, Reik W, Dean W . Epigenetic marking correlates with developmental potential in cloned bovine preimplantation embryos. Curr Biol, 2003,13(13):1116-1121.
doi: 10.1016/S0960-9822(03)00419-6 |
[19] |
Briggs R, King TJ . Transplantation of living nuclei from blastula cells into enucleated frogs' eggs. Proc Natl Acad Sci USA, 1952,38(5):455-463.
doi: 10.1073/pnas.38.5.455 pmid: 16589125 |
[20] |
Gurdon JB . The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. J Embryol Exp Morphol, 1962,10:622-640.
pmid: 13951335 |
[21] |
Wilmut I, Schnieke AE, Mcwhir J, Kind AJ, Campbell KHS . Viable offspring derived from fetal and adult mammalian cells. Nature, 1997,385(6619):810-813.
doi: 10.1038/385810a0 pmid: 9039911 |
[22] |
Kato Y, Tani T, Sotomaru Y, Kurokawa K, Kato J, Doguchi H, Yasue H, Tsunoda Y . Eight calves cloned from somatic cells of a single adult. Science, 1998,282(5396):2095-2098.
doi: 10.1126/science.282.5396.2095 pmid: 9851933 |
[23] |
Wakayama T, Perry AC, Zuccotti M, Johnson KR, Yanagimachi R . Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature, 1998,394(6691):369-374.
doi: 10.1038/28615 pmid: 9690471 |
[24] |
Baguisi A, Behboodi E, Melican DT, Pollock JS, Destrempes MM, Cammuso C, Williams JL, Nims SD, Porter CA, Midura P, Palacios MJ, Ayres SL, Denniston RS, Hayes ML, Ziomek CA, Meade HM, Godke RA, Gavin WG, Overström EW, Echelard Y . Production of goats by somatic cell nuclear transfer. Nat Biotechnol, 1999,17(5):456-461.
doi: 10.1038/8632 pmid: 10331804 |
[25] |
Polejaeva IA, Chen SH, Vaught TD, Page RL, Mullins J, Ball S, Dai Y, Boone J, Walker S, Ayares DL, Colman A, Campbell KH . Cloned pigs produced by nuclear transfer from adult somatic cells. Nature, 2000,407(6800):86-90.
doi: 10.1038/35024082 pmid: 10993078 |
[26] |
Onishi A, Iwamoto M, Akita T, Mikawa S, Takeda K, Awata T, Hanada H, Perry ACF . Pig cloning by microinjection of fetal fibroblast nuclei. Science, 2000,289(5482):1188-1190.
doi: 10.1126/science.289.5482.1188 pmid: 10947985 |
[27] |
Chesné P, Adenot PG, Viglietta C, Baratte M, Boulanger L, Renard JP . Cloned rabbits produced by nuclear transfer from adult somatic cells. Nat Biotechnol, 2002,20(4):366-369.
doi: 10.1038/nbt0402-366 pmid: 11923842 |
[28] |
Shin T, Kraemer D, Pryor J, Liu L, Rugila J, Howe L, Buck S, Murphy K, Lyons L, Westhusin M . A cat cloned by nuclear transplantation. Nature, 2002,415(6874):859.
doi: 10.1038/nature723 pmid: 11859353 |
[29] |
Woods GL, White KL, Vanderwall DK, Li GP, Aston KI, Bunch TD, Meerdo LN, Pate BJ . A mule cloned from fetal cells by nuclear transfer. Science, 2003,301(5636):1063.
doi: 10.1126/science.1086743 pmid: 12775846 |
[30] |
Galli C, Lagutina I, Crotti G, Colleoni S, Turini P, Ponderato N, Duchi R, Lazzari G . Pregnancy: a cloned horse born to its dam twin. Nature, 2003,424(6949):635.
doi: 10.1038/424635b pmid: 12904779 |
[31] |
Zhou Q, Renard JP, Le Friec G, Brochard V, Beaujean N, Cherifi Y, Fraichard A, Cozzi J . Generation of fertile cloned rats by regulating oocyte activation. Science, 2003,302(5648):1179.
doi: 10.1126/science.1088313 pmid: 14512506 |
[32] |
Lee BC, Kim MK, Jang G, Oh HJ, Yuda F, Kim HJ, Hossein MS, Kim JJ, Kang SK, Schatten G, Hwang WS . Dogs cloned from adult somatic cells. Nature, 2005,436(7051):641.
doi: 10.1038/436641a pmid: 16079832 |
[33] |
Wani NA, Wernery U, Hassan FA, Wernery R, Skidmore JA . Production of the first cloned camel by somatic cell nuclear transfer. Biol Reprod, 2010,82(2):373-379.
doi: 10.1095/biolreprod.109.081083 pmid: 19812298 |
[34] |
Liu Z, Cai Y, Wang Y, Nie Y, Zhang C, Xu Y, Zhang X, Lu Y, Wang Z, Poo M, Sun Q . Cloning of macaque monkeys by somatic cell nuclear transfer. Cell, 2018, 172(4): 881-887.e7.
doi: 10.1016/j.cell.2018.01.020 pmid: 29395327 |
[35] |
Tachibana M, Amato P, Sparman M, Gutierrez NM, Tippner-Hedges R, Ma H, Kang E, Fulati A, Lee HS, Sritanaudomchai H, Masterson K, Larson J, Eaton D, Sadler-Fredd K, Battaglia D, Lee D, Wu D, Jensen J, Patton P, Gokhale S, Stouffer RL, Wolf D, Mitalipov S . Human embryonic stem cells derived by somatic cell nuclear transfer. Cell, 2013,153(6):1228-1238.
doi: 10.1016/j.cell.2013.05.006 |
[36] |
Chung YG, Matoba S, Liu Y, Eum JH, Lu F, Jiang W, Lee JE, Sepilian V, Cha KY, Lee DR, Zhang Y . Histone demethylase expression enhances human somatic cell nuclear transfer efficiency and promotes derivation of pluripotent stem cells. Cell Stem Cell, 2015,17(6):758-766.
doi: 10.1016/j.stem.2015.10.001 pmid: 26526725 |
[37] |
Yamada M, Johannesson B, Sagi I, Burnett LC, Kort DH, Prosser RW, Paull D, Nestor MW, Freeby M, Greenberg E, Goland RS, Leibel RL, Solomon SL, Benvenisty N, Sauer MV, Egli D . Human oocytes reprogram adult somatic nuclei of a type 1 diabetic to diploid pluripotent stem cells. Nature, 2014,510(7506):533-536.
doi: 10.1038/nature13287 |
[38] |
Wakayama T, Tabar V, Rodriguez I, Perry AC, Studer L, Mombaerts P . Differentiation of embryonic stem cell lines generated from adult somatic cells by nuclear transfer. Science, 2001,292(5517):740-743.
doi: 10.1126/science.1059399 pmid: 11326103 |
[39] |
Rideout WM 3rd, Hochedlinger K, Kyba M, Daley GQ, Jaenisch R . Correction of a genetic defect by nuclear transplantation and combined cell and gene therapy. Cell, 2002,109(1):17-27.
doi: 10.1016/s0092-8674(02)00681-5 pmid: 11955443 |
[40] |
Byrne JA, Pedersen DA, Clepper LL, Nelson M, Sanger WG, Gokhale S, Wolf DP, Mitalipov SM . Producing primate embryonic stem cells by somatic cell nuclear transfer. Nature, 2007,450(7169):497-502.
doi: 10.1038/nature06357 pmid: 18004281 |
[41] |
Chung YG, Eum JH, Lee JE, Shim SH, Sepilian V, Hong SW, Lee Y, Treff NR, Choi YH, Kimbrel EA, Dittman RE, Lanza R, Lee DR . Human somatic cell nuclear transfer using adult cells. Cell Stem Cell, 2014,14(6):777-780.
doi: 10.1016/j.stem.2014.03.015 |
[42] |
Zhang J, Liu H, Luo S, Lu Z, Chávez-Badiola A, Liu Z, Yang M, Merhi Z, Silber SJ, Munné S, Konstantinidis M, Wells D, Tang JJ, Huang T . Live birth derived from oocyte spindle transfer to prevent mitochondrial disease. Reprod Biomed Online, 2017,34(4):361-368.
doi: 10.1016/j.rbmo.2017.01.013 pmid: 28385334 |
[43] |
Lai L, Prather RS . Production of cloned pigs by using somatic cells as donors. Cloning Stem Cells, 2003,5(4):233-241.
doi: 10.1089/153623003772032754 pmid: 14733743 |
[44] |
Liu Y, Li J, Løvendahl P, Schmidt M, Larsen K, Callesen H . In vitro manipulation techniques of porcine embryos: a meta-analysis related to transfers, pregnancies and piglets. Reprod Fertil Dev, 2015,27(3):429-439.
doi: 10.1071/RD13329 pmid: 25482653 |
[45] |
Ogura A, Inoue K, Wakayama T . Recent advancements in cloning by somatic cell nuclear transfer. Philos Trans R Soc Lond B Biol Sci, 2013,368(1609):20110329.
doi: 10.1098/rstb.2011.0329 pmid: 23166393 |
[46] |
Ao Z, Liu DW, Cai GY, Wu ZF, Li ZC . Placental developmental defects in cloned mammalian animals. Hereditas(Beijing), 2016,38(5):402-410.
doi: 10.16288/j.yczz.15-466 pmid: 27232488 |
敖政, 刘德武, 蔡更元, 吴珍芳, 李紫聪 . 克隆哺乳动物的胎盘发育缺陷. 遗传, 2016,38(5):402-410.
doi: 10.16288/j.yczz.15-466 pmid: 27232488 |
|
[47] |
Loi P, Iuso D, Czernik M, Ogura A . A New, Dynamic era for somatic cell nuclear transfer? Trends Biotechnol, 2016,34(10):791-797.
doi: 10.1016/j.tibtech.2016.03.008 pmid: 27118511 |
[48] |
Ao Z, Liu D, Zhao C, Yue Z, Shi J, Zhou R, Cai G, Zheng E, Li Z, Wu Z . Birth weight, umbilical and placental traits in relation to neonatal loss in cloned pigs. Placenta, 2017,57:94-101.
doi: 10.1016/j.placenta.2017.06.010 pmid: 28864025 |
[49] |
Oback B . Climbing mount efficiency--small steps, not giant leaps towards higher cloning success in farm animals. Reprod Domest Anim, 2008,43(s2):407-416.
doi: 10.1111/j.1439-0531.2008.01192.x pmid: 18638154 |
[50] |
Yang X, Smith SL, Tian XC, Lewin HA, Renard JP, Wakayama T . Nuclear reprogramming of cloned embryos and its implications for therapeutic cloning. Nat Genet, 2007,39(3):295-302.
doi: 10.1038/ng1973 pmid: 17325680 |
[51] |
Graves JAM . Sex chromosome specialization and degeneration in mammals. Cell, 2006,124(5):901-914.
doi: 10.1016/j.cell.2006.02.024 pmid: 16530039 |
[52] |
Sahakyan A, Yang Y, Plath K . The role of Xist in X-chromosome dosage compensation. Trends Cell Biol, 2018,28(12):999-1013.
doi: 10.1016/j.tcb.2018.05.005 pmid: 29910081 |
[53] |
Furlan G, Rougeulle C . Function and evolution of the long noncoding RNA circuitry orchestrating X-chromosome inactivation in mammals. Wiley Interdiscip Rev RNA, 2016,7(5):702-722.
doi: 10.1002/wrna.1359 pmid: 27173581 |
[54] |
Shin J, Bossenz M, Chung Y, Ma H, Byron M, Taniguchi-Ishigaki N, Zhu X, Jiao B, Hall LL, Green MR, Jones SN, Hermans-Borgmeyer I, Lawrence JB, Bach I . Maternal Rnf12/RLIM is required for imprinted X-chromosome inactivation in mice. Nature, 2010,467(7318):977-981.
doi: 10.1038/nature09457 pmid: 20962847 |
[55] |
Payer B . Developmental regulation of X-chromosome inactivation. Semin Cell Dev Biol, 2016,56:88-99.
doi: 10.1016/j.semcdb.2016.04.014 pmid: 27112543 |
[56] |
Moreira De Mello JC, De Araújo ES, Stabellini R, Fraga AM, De Souza JES, Sumita DR, Camargo AA, Pereira LV . Random X inactivation and extensive mosaicism in human placenta revealed by analysis of allele-specific gene expression along the X chromosome. PLoS One, 2010,5(6):e10947.
doi: 10.1371/journal.pone.0010947 pmid: 20532033 |
[57] |
Zeng F, Huang ZH, Yuan YJ, Shi JS, Cai GY, Liu DW, Wu ZF, Li ZC . Effects of RNAi-mediated knockdown of Xist on the developmental efficiency of cloned male porcine embryos. J Reprod Dev, 2016,62(6):591-597.
doi: 10.1262/jrd.2016-095 pmid: 27569767 |
[58] |
Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, Tempst P, Jones RS, Zhang Y . Role of histone H3 lysine 27 methylation in polycomb-group silencing. Science, 2002,298(5595):1039-1043.
doi: 10.1126/science.1076997 pmid: 12351676 |
[59] |
Nora EP, Heard E . Chromatin structure and nuclear organization dynamics during X-chromosome inactivation. Cold Spring Harb Symp Quant Biol, 2010,75:333-344.
doi: 10.1101/sqb.2010.75.032 pmid: 21447823 |
[60] |
Fukuda A, Cao F, Morita S, Yamada K, Jincho Y, Tane S, Sotomaru Y, Kono T . Identification of inappropriately reprogrammed genes by large-scale transcriptome analysis of individual cloned mouse blastocysts. PloS One, 2010,5(6):e11274.
doi: 10.1371/journal.pone.0011274 pmid: 20614022 |
[61] |
Yuan L, Wang AF, Yao CG, Huang YY, Duan FF, Lv QY, Wang DX, Ouyang HS, Li ZJ, Lai LX . Aberrant expression of Xist in aborted porcine fetuses derived from somatic cell nuclear transfer embryos. Int J Mol Sci, 2014,15(12):21631-21643.
doi: 10.3390/ijms151221631 pmid: 25429426 |
[62] |
Chen XY, Zhu ZW, Yu FX, Huang J, Jia RX, Pan JZ . Effect of shRNA-mediated Xist knockdown on the quality of porcine parthenogenetic embryos. Dev Dyn, 2019,248(1):140-148.
doi: 10.1002/dvdy.24660 pmid: 30055068 |
[63] |
Yang Y, Wu D, Liu D, Shi J, Zhou R, He X, Quan J, Cai G, Zheng E, Wu Z, Li Z . Mutation of the XIST gene upregulates expression of X-linked genes but decreases the developmental rates of cloned male porcine embryos. Mol Reprod Dev, 2017,84(6):525-534.
doi: 10.1002/mrd.22808 pmid: 28387970 |
[64] |
Ruan D, Peng J, Wang X, Ouyang Z, Zou Q, Yang Y, Chen F, Ge W, Wu H, Liu Z, Zhao Y, Zhao B, Zhang Q, Lai C, Fan N, Zhou Z, Liu Q, Li N, Jin Q, Shi H, Xie J, Song H, Yang X, Chen J, Wang K, Li X, Lai L . XIST derepression in active X chromosome hinders pig somatic cell nuclear transfer. Stem Cell Reports, 2018,10(2):494-508.
doi: 10.1016/j.stemcr.2017.12.015 pmid: 29337117 |
[65] |
Sulewska A, Niklinska W, Kozlowski M, Minarowski L, Naumnik W, Niklinski J, Dabrowska K, Chyczewski L . DNA methylation in states of cell physiology and pathology. Folia Histochem Cytobiol, 2007,45(3):149-158.
pmid: 17951162 |
[66] |
Guo L, Li H, Han ZM . Effect of DNA methylation and histone modification during the de-velopment of cloned animals. Hereditas(Beijing), 2010,32(8):762-768.
doi: 10.3724/SP.J.1005.2010.00762 |
郭磊, 李慧, 韩之明 . DNA甲基化和组蛋白修饰在克隆动物发育过程中的作用. 遗传, 2010,32(8):762-768.
doi: 10.3724/SP.J.1005.2010.00762 |
|
[67] | Song HW, An TZ, Piao SH, Wang CS . Mammalian DNA methylation and its roles during the induced re-programming of somatic cells. Hereditas(Beijing), 2014,36(5):431-438. |
宋红卫, 安铁洙, 朴善花, 王春生 . 哺乳动物DNA甲基化及其在体细胞诱导重编程中的作用. 遗传, 2014,36(5):431-438. | |
[68] |
Deng DJ . DNA methylation and demethylation: current status and future per-spective. Hereditas(Beijing), 2014,36(5):403-410.
doi: 10.3724/SP.J.1005.2014.0403 |
邓大君 . DNA甲基化和去甲基化的研究现状及思考. 遗传, 2014,36(5):403-410.
doi: 10.3724/SP.J.1005.2014.0403 |
|
[69] |
Wu X, Zhang Y . TET-mediated active DNA demethylation: mechanism, function and beyond. Nat Rev Genet, 2017,18(9):517-534.
doi: 10.1038/nrg.2017.33 pmid: 28555658 |
[70] |
Mayer W, Niveleau A, Walter J, Fundele R, Haaf T . Demethylation of the zygotic paternal genome. Nature, 2000,403(6769):501-502.
doi: 10.1038/35000656 pmid: 10676950 |
[71] |
Simonsson S, Gurdon J . DNA demethylation is necessary for the epigenetic reprogramming of somatic cell nuclei. Nat Cell Biol, 2004,6(10):984-990.
doi: 10.1038/ncb1176 pmid: 15448701 |
[72] |
Zhang Y, Charlton J, Karnik R, Beerman I, Smith ZD, Gu H, Boyle P, Mi X, Clement K, Pop R, Gnirke A, Rossi DJ, Meissner A. Targets and genomic constraints of ectopic Dnmt3b expression. eLife, 2018, 7: pii: e40757.
doi: 10.7554/eLife.40757 pmid: 30468428 |
[73] |
Inoue A, Zhang Y . Replication-dependent loss of 5-hydroxymethylcytosine in mouse preimplantation embryos. Science, 2011,334(6053):194.
doi: 10.1126/science.1212483 pmid: 21940858 |
[74] | Matoba S, Wang H, Jiang L, Lu F, Iwabuchi KA, Wu X, Inoue K, Yang L, Press W, Lee JT, Ogura A, Shen L, Zhang Y. Loss of H3K27me3 imprinting in somatic cell nuclear transfer embryos disrupts post-implantation development. Cell Stem Cell, 2018, 23(3): 343-354.e345. |
[75] |
Gao R, Wang C, Gao Y, Xiu W, Chen J, Kou X, Zhao Y, Liao Y, Bai D, Qiao Z, Yang L, Wang M, Zang R, Liu X, Jia Y, Li Y, Zhang Y, Yin J, Wang H, Wan X, Liu W, Zhang Y, Gao S . Inhibition of aberrant DNA re-methylation improves post-implantation development of somatic cell nuclear transfer embryos. Cell Stem Cell, 2018, 23(3): 426-435.e425.
doi: 10.1016/j.stem.2018.07.017 pmid: 30146410 |
[76] |
Johnstone RW . Histone-deacetylase inhibitors: novel drugs for the treatment of cancer. Nat Rev Drug Discov, 2002,1(4):287-299.
doi: 10.1038/nrd772 pmid: 12120280 |
[77] |
Ji HL, Lu SS, Pan DK . Epigenetic reprogramming by somatic cell nuclear transfer: questions and potential solutions. Hereditas(Beijing), 2014,36(12):1211-1218.
doi: 10.3724/SP.J.1005.2014.1211 |
纪慧丽, 卢晟盛, 潘登科 . 体细胞核移植后表观遗传重编程的异常及其修复. 遗传, 2014,36(12):1211-1218.
doi: 10.3724/SP.J.1005.2014.1211 |
|
[78] |
Kishigami S, Mizutani E, Ohta H, Hikichi T, Thuan NV, Wakayama S, Bui HT, Wakayama T . Significant improvement of mouse cloning technique by treatment with trichostatin a after somatic nuclear transfer. Biochem Biophys Res Commun, 2006,340(1):183-189.
doi: 10.1016/j.bbrc.2005.11.164 pmid: 16356478 |
[79] |
Rybouchkin A, Kato Y, Tsunoda Y . Role of histone acetylation in reprogramming of somatic nuclei following nuclear transfer. Biol Reprod, 2006,74(6):1083-1089.
doi: 10.1095/biolreprod.105.047456 pmid: 16481594 |
[80] |
Inoue K, Oikawa M, Kamimura S, Ogonuki N, Nakamura T, Nakano T, Abe K, Ogura A . Trichostatin a specifically improves the aberrant expression of transcription factor genes in embryos produced by somatic cell nuclear transfer. Sci Rep, 2015,5:10127.
doi: 10.1038/srep10127 pmid: 25974394 |
[81] |
Bohrer RC, Duggavathi R, Bordignon V . Inhibition of histone deacetylases enhances DNA damage repair in SCNT embryos. Cell Cycle, 2014,13(13):2138-2148.
doi: 10.4161/cc.29215 |
[82] |
Jin JX, Kang JD, Li S, Jin L, Zhu HY, Guo Q, Gao QS, Yan CG, Yin XJ . PXD101 significantly improves nuclear reprogramming and the in vitro developmental competence of porcine SCNT embryos. Biochem Biophys Res Commun, 2015,456(1):156-161.
doi: 10.1016/j.bbrc.2014.11.051 pmid: 25446119 |
[83] |
Akagi S, Matsukawa K, Mizutani E, Fukunari K, Kaneda M, Watanabe S, Takahashi S . Treatment with a histone deacetylase inhibitor after nuclear transfer improves the preimplantation development of cloned bovine embryos. J Reprod Dev, 2011,57(1):120-126.
doi: 10.1262/jrd.10-058a pmid: 20962457 |
[84] |
Li X, Ao X, Bai L, Li D, Liu X, Wei Z, Bou S, Li G . VPA selectively regulates pluripotency gene expression on donor cell and improve SCNT embryo development. In Vitro Cell Dev Biol Anim, 2018,54(7):496-504.
doi: 10.1007/s11626-018-0272-4 pmid: 29943354 |
[85] |
Song BS, Yoon SB, Sim BW, Kim YH, Cha JJ, Choi SA, Jeong KJ, Kim JS, Huh JW, Lee SR, Kim SH, Kim SU, Chang KT . Valproic acid enhances early development of bovine somatic cell nuclear transfer embryos by alleviating endoplasmic reticulum stress. Reprod Fertil Dev, 2014,26(3):432-440.
doi: 10.1071/RD12336 pmid: 23506644 |
[86] |
Zhao J, Hao Y, Ross JW, Spate LD, Walters EM, Samuel MS, Rieke A, Murphy CN, Prather RS . Histone deacetylase inhibitors improve in vitro and in vivo developmental competence of somatic cell nuclear transfer porcine embryos. Cell Reprogram, 2010,12(1):75-83.
doi: 10.1089/cell.2009.0038 pmid: 20132015 |
[87] |
Martinez-Diaz MA, Che L, Albornoz M, Seneda MM, Collis D, Coutinho AR, El-Beirouthi N, Laurin D, Zhao X, Bordignon V . Pre-and postimplantation development of swine-cloned embryos derived from fibroblasts and bone marrow cells after inhibition of histone deacetylases. Cell Reprogram, 2010,12(1):85-94.
doi: 10.1089/cell.2009.0047 pmid: 20132016 |
[88] |
Wang C, Liu X, Gao Y, Yang L, Li C, Liu W, Chen C, Kou X, Zhao Y, Chen J, Wang Y, Le R, Wang H, Duan T, Zhang Y, Gao S . Reprogramming of H3K9me3-dependent heterochromatin during mammalian embryo development. Nat Cell Biol, 2018,20(5):620-631.
doi: 10.1038/s41556-018-0093-4 pmid: 29686265 |
[89] |
Djekidel MN, Inoue A, Matoba S, Suzuki T, Zhang CX, Lu FL, Jiang L, Zhang Y . Reprogramming of chromatin accessibility in somatic cell nuclear transfer is DNA replication independent. Cell Rep, 2018,23(7):1939-1947.
doi: 10.1016/j.celrep.2018.04.036 pmid: 29768195 |
[90] |
Liu X, Wang Y, Gao Y, Su J, Zhang J, Xing X, Zhou C, Yao K, An Q, Zhang Y. H3K9 demethylase KDM4E is an epigenetic regulator for bovine embryonic development and a defective factor for nuclear reprogramming. Development, 2018, 145(4), pii: dev158261.
doi: 10.1242/dev.158261 pmid: 29453221 |
[91] | Hang XW, Cheng XR, Wang N, Zhang YW, Liao C, Jin LH, Lei L . Histone variant H3.3 and its functions in reprogramming. Hereditas(Beijing), 2018,40(3):186-196. |
黄星卫, 程香荣, 王楠, 张雨薇, 廖辰, 金连弘, 雷蕾 . 组蛋白H3变体H3.3及其在细胞重编程中的作用. 遗传, 2018,40(3):186-196. | |
[92] |
Inoue A, Jiang L, Lu F, Suzuki T, Zhang Y . Maternal H3K27me3 controls DNA methylation-independent imprinting. Nature, 2017,547(7664):419-424.
doi: 10.1038/nature23262 pmid: 28723896 |
[93] |
Inoue A, Jiang L, Lu F, Zhang Y . Genomic imprinting of Xist by maternal H3K27me3. Genes Dev, 2017,31(19):1927-1932.
doi: 10.1101/gad.304113.117 pmid: 29089420 |
[94] |
Keefer CL . Lessons learned from nuclear transfer (cloning). Theriogenology, 2008,69(1):48-54.
doi: 10.1016/j.theriogenology.2007.08.033 pmid: 17945341 |
[95] |
Bai GY, Song SH, Zhang YW, Huang X, Huang XW, Sun RZ, Lei L . Kdm6a overexpression improves the development of cloned mouse embryos. Zygote, 2018,26(1):24-32.
doi: 10.1017/S0967199417000673 pmid: 29239295 |
[96] |
K L, Chen YJ, Gao SR. Historical review of reprogramming and pluripotent stem cell research in China. Hereditas(Beijing), 2018,40(10):825-840.
doi: 10.16288/j.yczz.18-209 pmid: 30369467 |
康岚, 陈嘉瑜, 高绍荣 . 中国细胞重编程和多能干细胞研究进展. 遗传, 2018,40(10):825-840.
doi: 10.16288/j.yczz.18-209 pmid: 30369467 |
|
[97] |
Lu F, Liu Y, Inoue A, Suzuki T, Zhao K, Zhang Y . Establishing chromatin regulatory landscape during mouse preimplantation development. Cell, 2016,165(6):1375-1388.
doi: 10.1016/j.cell.2016.05.050 pmid: 27259149 |
[98] |
Ke Y, Xu Y, Chen X, Feng S, Liu Z, Sun Y, Yao X, Li F, Zhu W, Gao L, Chen H, Du Z, Xie W, Xu X, Huang X, Liu J. . 3D chromatin structures of mature gametes and structural reprogramming during mammalian embryogenesis. Cell, 2017, 170(2): 367-381.e320.
doi: 10.1016/j.cell.2017.06.029 pmid: 28709003 |
[99] |
Cheloufi S, Elling U, Hopfgartner B, Jung YL, Murn J, Ninova M, Hubmann M, Badeaux AI, Euong Ang C, Tenen D, Wesche DJ, Abazova N, Hogue M, Tasdemir N, Brumbaugh J, Rathert P, Jude J, Ferrari F, Blanco A, Fellner M, Wenzel D, Zinner M, Vidal SE, Bell O, Stadtfeld M, Chang HY, Almouzni G, Lowe SW, Rinn J, Wernig M, Aravin A, Shi Y, Park PJ, Penninger JM, Zuber J, Hochedlinger K . The histone chaperone CAF-1 safeguards somatic cell identity. Nature, 2015,528(7581):218-224.
doi: 10.1038/nature15749 pmid: 26659182 |
[100] |
Soufi A, Donahue G, Zaret KS . Facilitators and impediments of the pluripotency reprogramming factors' initial engagement with the genome. Cell, 2012,151(5):994-1004.
doi: 10.1016/j.cell.2012.09.045 |
[101] |
Sridharan R, Gonzales-Cope M, Chronis C, Bonora G, Mckee R, Huang CY, Patel S, Lopez D, Mishra N, Pellegrini M, Carey M, Garcia BA, Plath K . Proteomic and genomic approaches reveal critical functions of H3K9 methylation and heterochromatin protein-1γ in reprogramming to pluripotency. Nat Cell Biol, 2013,15(7):872-882.
doi: 10.1038/ncb2768 pmid: 23748610 |
[102] |
Okae H, Matoba S, Nagashima T, Mizutani E, Inoue K, Ogonuki N, Chiba H, Funayama R, Tanaka S, Yaegashi N, Nakayama K, Sasaki H, Ogura A, Arima T . RNA sequencing-based identification of aberrant imprinting in cloned mice. Hum Mol Genet, 2014,23(4):992-1001.
doi: 10.1093/hmg/ddt495 |
[103] |
Schiebinger G, Shu J, Tabaka M, Cleary B, Subramanian V, Solomon A, Gould J, Liu S, Lin S, Berube P, Lee L, Chen J, Brumbaugh J, Rigollet P, Hochedlinger K, Jaenisch R, Regev A, Lander ES . Optimal-transport asnalysis of single-cell gene expression identifies developmental trajectories in reprogramming. Cell, 2019, 176(4): 928-943.e922.
doi: 10.1016/j.cell.2019.01.006 pmid: 30712874 |
[104] |
Fan ZQ, Yang M, Regouski M, Polejaeva IA . Gene knockouts in goats using CRISPR/Cas9 system and somatic cell nuclear transfer. Methods Mol Biol, 2019,1874:373-390.
doi: 10.1007/978-1-4939-8831-0_22 pmid: 30353526 |
[105] |
Sander JD, Joung JK . CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol, 2014,32(4):347-355.
doi: 10.1038/nbt.2842 pmid: 24584096 |
[1] | 许梦萱, 周明. 植物RNA聚合酶IV调控DNA甲基化和发育的研究进展[J]. 遗传, 2022, 44(7): 567-580. |
[2] | 宋绍征, 何正义, 成勇, 于宝利, 张婷, 李丹. TALENs介导MSTN基因突变山羊的制备及性能分析[J]. 遗传, 2022, 44(6): 531-542. |
[3] | 张子寅, 周燕萍, 孟卓贤. CUT&Tag技术在代谢组织细胞的实验操作[J]. 遗传, 2022, 44(10): 958-966. |
[4] | 王雅楠, 徐涛, 王万鹏, 张庆祝, 解莉楠. 表观遗传修饰在作物重要性状形成中的作用[J]. 遗传, 2021, 43(9): 858-879. |
[5] | 王天一, 王应祥, 尤辰江. 植物PHD结构域蛋白的结构与功能特性[J]. 遗传, 2021, 43(4): 323-339. |
[6] | 张向前, 李楠, 解新明. 表观遗传学综合性实验设计与探讨[J]. 遗传, 2021, 43(12): 1179-1187. |
[7] | 王芯悦, 李亮, 段秋慧, 李大力, 陈金联. Uhrf1对肠上皮发育的影响[J]. 遗传, 2021, 43(1): 84-93. |
[8] | 周俊, 赵成成, 吴霄, 石俊松, 周荣, 吴珍芳, 李紫聪. 猪耳成纤维细胞转录组异质性及对核移植胚胎发育的潜在影响[J]. 遗传, 2020, 42(9): 898-915. |
[9] | 敖政, 陈祥, 吴珍芳, 李紫聪. 体细胞克隆猪发育异常研究进展[J]. 遗传, 2020, 42(10): 993-1003. |
[10] | 崔亨贞, 孙蜜烛, 王润芝, 李辰雨, 黄予暄, 黄秋菊, 乔晓孟. 内侧前额叶皮质DNA甲基化调控大鼠酒精相关行为[J]. 遗传, 2020, 42(1): 112-125. |
[11] | 王昕源, 张雨, 杨楠, 程禾, 孙玉洁. DNMT3a通过提升基因内部甲基化介导紫杉醇诱导的LINE-1异常表达[J]. 遗传, 2020, 42(1): 100-111. |
[12] | 张競文,续倩,李国亮. 癌症发生发展中的表观遗传学研究[J]. 遗传, 2019, 41(7): 567-581. |
[13] | 黄鑫,陈永强,徐国良,彭淑红. 脂肪组织DNA甲基化与糖尿病和肥胖的发生发展[J]. 遗传, 2019, 41(2): 98-110. |
[14] | 潘云枫, 王演怡, 陈静雯, 范怡梅. 线粒体代谢介导的表观遗传改变与衰老研究[J]. 遗传, 2019, 41(10): 893-904. |
[15] | 鞠君毅,赵权. γ-珠蛋白基因表达调控机制与临床应用[J]. 遗传, 2018, 40(6): 429-444. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: