[1] Marcolla A, Bouchetemble P, Lerosey Y, Marie JP, Dehesdin D. Genetic deafness. Ann Otolaryngol Chir Cervicofac, 2006, 123(3): 143-147.[2] Dror AA, Avraham KB. Hearing impairment: a panoply of genes and functions. Neuron, 2010, 68(2): 293-308.[3] Sprinzl GM, Wolf-Magele A, Schnabl J, Koci V. The active middle ear implant for the rehabilitation of sen-sorineural, mixed and conductive hearing losses. Laryngorhinootologie, 2011, 90(9): 560-572.[4] Friedman LM, Dror AA, Avraham KB. Mouse models to study inner ear development and hereditary hearing loss. Int J Dev Biol, 2007, 51(6-7): 609-631.[5] Friedman LM, Dror AA, Mor E, Tenne T, Toren G, Satoh T, Biesemeier DJ, Shomron N, Fekete DM, Hornstein E, Avraham KB. MicroRNAs are essential for development and function of inner ear hair cells in vertebrates. Proc Natl Acad Sci USA, 2009, 106(19): 7915-7920.[6] Friedman RC, Farh KKH, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res, 2009, 19(1): 92-105.[7] O'Day E, Lal A. MicroRNAs and their target gene networks in breast cancer. Breast Cancer Res, 2010, 12(2): 201.[8] Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, Pfeffer S, Rice A, Kamphorst AO, Landthaler M, Lin C, Socci ND, Hermida L, Fulci V, Chiaretti S, Foà R, Tuschl T. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell, 2007, 129(7): 1401-1414.[9] Weston MD, Pierce ML, Rocha-Sanchez S, Beisel KW, Soukup GA. MicroRNA gene expression in the mouse inner ear. Brain Res, 2006, 1111(1): 95-104.[10] Xu SB, Witmer PD, Lumayag S, Kovacs B, Valle D. MicroRNA (miRNA) transcriptome of mouse retina and identification of a sensory organ-specific miRNA cluster. J Biol Chem, 2007, 282(34): 25053-25066.[11] Sacheli R, Nguyen L, Borgs L, Vandenbosch R, Bodson M, Lefebvre P, Malgrange B. Expression patterns of miR-96, miR-182 and miR-183 in the developing inner ear. Gene Expr Patterns, 2009, 9(5): 364-370.[12] Li HQ, Kloosterman W, Fekete DM. MicroRNA-183 family members regulate sensorineural fates in the inner ear. J Neurosci, 2010, 30(9): 3254-3263.[13] Pierce ML, Weston MD, Fritzsch B, Gabel HW, Ruvkun G, Soukup GA. MicroRNA-183 family conservation and cili-ated neurosensory organ expression. Evol Dev, 2008, 10(1): 106-113.[14] Lewis MA, Quint E, Glazier AM, Fuchs H, De Angelis MH, Langford C, van Dongen S, Abreu-Goodger C, Pii-pari M, Redshaw N, Dalmay T, Moreno-Pelayo MA, En-right AJ, Steel KP. An ENU-induced mutation of miR-96 associated with progressive hearing loss in mice. Nat Genet, 2009, 41(5): 614-618.[15] Mencía A, Modamio-Høybjør S, Redshaw N, Morín M, Mayo-Merino F, Olavarrieta L, Aguirre LA, del Castillo I, Steel KP, Dalmay T, Moreno F, Moreno-Pelayo MA. Mutations in the seed region of human miR-96 are responsible for nonsyndromic progressive hearing loss. Nat Genet, 2009, 41(5): 609-613.[16] Soukup GA, Fritzsch B, Pierce ML, Weston MD, Jahan I, McManus MT, Harfe BD. Residual microRNA expression dictates the extent of inner ear development in conditional Dicer knockout mice. Dev Biol, 2009, 328(2): 328-341.[17] Gehring M, Reik W, Henikoff S. DNA demethylation by DNA repair. Trends Genet, 2009, 25(2): 82-90.[18] Richards AJ, McNinch A, Martin H, Oakhill K, Rai H, Waller S, Treacy B, Whittaker J, Meredith S, Poulson A, Snead MP. Stickler syndrome and the vitreous phenotype: mutations in COL2A1 and COL11A1. Hum Mutat, 2010, 31(6): E1461-E1471.[19] Hoornaert KP, Vereecke I, Dewinter C, Rosenberg T, Beemer FA, Leroy JG, Bendix L, Björck E, Bonduelle M, Boute O, Cormier-Daire V, De Die-Smulders C, Mortier GR. Stickler syndrome caused by COL2A1 mutations: genotype-phenotype correlation in a series of 100 patients. Eur J Hum Genet, 2010, 18(8): 872-880.[20] Wilkin DJ, Liberfarb R, Davis J, Levy HP, Cole WG, Francomano CA, Cohn DH. Rapid determination of COL2A1 mutations in individuals with Stickler syndrome: analysis of potential premature termination codons. Am J Med Genet, 2000, 94(2): 141-148.[21] Lemmers RJLF, Van Overveld PGM, Sandkuijl LA, Vrieling H, Padberg GW, Frants RR, van der Maarel SM. Mechanism and timing of mitotic rearrangements in the subtelomeric D4Z4 repeat involved in facioscapulo-humeral muscular dystrophy. Am J Hum Genet, 2004, 75(1): 44-53.[22] van der Maarel SM, Tawil R, Tapscott SJ. Facioscapulo-humeral muscular dystrophy and DUX4: breaking the silence. Trends Mol Med, 2011, 17(5): 252-258.[23] van Overveld PGM, Enthoven L, Ricci E, Rossi M, Feli-cetti L, Jeanpierre M, Winokur ST, Frants RR, Padberg GW, van der Maarel SM. Variable hypomethylation of D4Z4 in facioscapulohumeral muscular dystrophy. Ann Neurol, 2005, 58(4): 569-576.[24] Samaco RC, Neul JL. Complexities of Rett syndrome and MeCP2. J Neurosci, 2011, 31(22): 7951-7959.[25] Matijevic T, Knezevic J, Slavica M, Pavelic J. Rett syn-drome: from the gene to the disease. Eur Neurol, 2009, 61(1): 3-10.[26] Füllgrabe J, Kavanagh E, Joseph B. Histone onco-modifications. Oncogene, 2011, 30(31): 3391-3403.[27] Gu RD, Montcouquiol M, Marchionni M, Corwin JT. Pro-liferative responses to growth factors decline rapidly dur-ing postnatal maturation of mammalian hair cell epithelia. Eur J Neurosci, 2007, 25(5): 1363-1372.[28] Savary E, Hugnot JP, Chassigneux Y, Travo C, Duperray C, Van De Water T, Zine A. Distinct population of hair cell progenitors can be isolated from the postnatal mouse cochlea using side population analysis. Stem Cells, 2007, 25(2): 332-339.[29] Lu ZJ, Corwin JT. The influence of glycogen synthase kinase 3 in limiting cell addition in the mammalian ear. Dev Neurobiol, 2008, 68(8): 1059-1075.[30] Christofori G. Snail1 links transcriptional control with epigenetic regulation. Embo J, 2010, 29(11): 1787-1789.[31] Vahava O, Morell R, Lynch ED, Weiss S, Kagan ME, Ahituv N, Morrow JE, Lee MK, Skvorak AB, Morton CC, Blumenfeld A, Frydman M, Friedman TB, King MC, Avraham KB. Mutation in transcription factor POU4F3 associated with inherited progressive hearing loss in hu-mans. Science, 1998, 279(5358): 1950-1954.[32] Duan ZJ, Horwitz M. Gfi-1 takes center stage in hemato-poietic stem cells. Trends Mol Med, 2005, 11(2): 49-52.[33] Hertzano R, Montcouquiol M, Rashi-Elkeles S, Elkon R, Yücel R, Frankel WN, Rechavi G, Möröy T, Friedman TB, Kelley MW, Avraham KB. Transcription profiling of inner ears from Pou4f3ddl/ddl identifies Gfi1 as a target of the Pou4f3 deafness gene. Hum Mol Genet, 2004, 13(18): 2143-2153.[34] Kiefer SM, Robbins L, Barina A, Zhang ZH, Rauchman M. SALL1 truncated protein expression in Townes-Brocks syndrome leads to ectopic expression of downstream genes. Hum Mutat, 2008, 29(9): 1133-1140.[35] Karantzali E, Lekakis V, Ioannou M, Hadjimichael C, Papamatheakis J, Kretsovali A. Sall1 regulates embryonic stem cell differentiation in association with nanog. J Biol Chem, 2011, 286(2): 1037-1045.[36] Ng SS, Yue WW, Oppermann U, Klose RJ. Dynamic protein methylation in chromatin biology. Cell Mol Life Sci, 2009, 66(3): 407-422.[37] Wincent J, Holmberg E, Strömland K, Soller M, Mirzaei L, Djureinovic T, Robinson KL, Anderlid BM, Schoumans J. CHD7 mutation spectrum in 28 Swedish patients diagnosed with CHARGE syndrome. Clin Genet, 2008, 74(1): 31-38.[38] Schnetz MP, Bartels CF, Shastri K, Balasubramanian D, Zentner GE, Balaji R, Zhang XD, Song LY, Wang ZH, LaFramboise T, Crawford GE, Scacheri1 PC. Genomic distribution of CHD7 on chromatin tracks H3K4 methylation patterns. Genome Res, 2009, 19(4): 590-601.[39] Giacinti C, Giordano A. RB and cell cycle progression. Oncogene, 2006, 25(38): 5220-5227.[40] McCabe MT, Davis JN, Day ML. Regulation of DNA methyltransferase 1 by the pRb/E2F1 pathway. Cancer Res, 2005, 65(9): 3624-3632.[41] Morey SR, Smiraglia DJ, James SR, Yu J, Moser MT, Foster BA, Karpf AR. DNA methylation pathway altera-tions in an autochthonous murine model of prostate cancer. Cancer Res, 2006, 66(24): 11659-11667.[42] Moss TJ, Wallrath LL. Connections between epigenetic gene silencing and human disease. Mutat Res, 2007, 618(1-2): 163-174.[43] Sage C, Huang MQ, Vollrath MA, Brown MC, Hinds PW, Corey DP, Vetter DE, Chen ZY. Essential role of retino-blastoma protein in mammalian hair cell development and hearing. Proc Natl Acad Sci USA, 2006, 103(19): 7345-7350.[44] Savary E, Hugnot JP, Chassigneux Y, Travo C, Duperray C, Van De Water T, Zine A. Distinct population of hair cell progenitors can be isolated from the postnatal mouse cochlea using side population analysis. Stem Cells, 2007, 25(2): 332-339. |