[1] Martínez-Sales V, Sánchez-Lázaro I, Vila V, Almenar L, Contreras T, Reganon E. Circulating endothelial cells in patients with heart failure and left ventricular dysfunction. Dis Markers, 2011, 31(2): 75-82.[2] Ramli J, Calderonartero P, Block RC, Mousa SA. Novel therapeutic targets for preserving a healthy endothelium: strategies for reducing the risk of vascular and cardiovascular disease. Cardiol J, 2011, 18(4): 352-363.[3] Wang MY, Khazan B, Lakatta EG. Central arterial aging and angiotensin II signaling. Curr Hypertens Rev, 2010, 6(4): 266-281.[4] Csiszar A, Labinskyy N, Jimenez R, Pinto JT, Ballabh P, Losonczy G, Pearson KJ, De Cabo R, Ungvari Z. Anti-oxidative and anti-inflammatory vasoprotective effects of caloric restriction in aging: role of circulating factors and SIRT1. Mech Ageing Dev, 2009, 130(8): 518-527.[5] Minamiyama Y, Bito Y, Takemura S, Takahashi Y, Kodai S, Mizuguchi S, Nishikawa Y, Suehiro S, Okada S. Calorie restriction improves cardiovascular risk factors via reduction of mitochondrial reactive oxygen species in type II diabetic rats. J Pharmacol Exp Ther, 2007, 320(2): 535-543.[6] Ketonen J, Pilvi T, Mervaala E. Caloric restriction reverses high-fat diet-induced endothelial dysfunction and vascular superoxide production in C57Bl/6 mice. Heart Vessels, 2010, 25(3): 254-262.[7] Chou SH, Lee YC, Huang CF, Wang YR, Yu HP, Lau YT. Gender-specific effects of caloric restriction on the balance of vascular nitric oxide and superoxide radical. Cardiovasc Res, 2010, 87(4): 751-759.[8] Pearson KJ, Lewis KN, Price NL, Chang JW, Perez E, Cascajo MV, Tamashiro KL, Poosala S, Csiszar A, Ungvari Z, Kensler TW, Yamamoto M, Egan JM, Longo DL, Ingram DK, Navas P, De Cabo R. Nrf2 mediates cancer protection but not prolongevity induced by caloric restriction. Proc Natl Acad Sci USA, 2008, 105(7): 2325-2330.[9] Someya S, Yu W, Hallows WC, Xu JZ, Vann JM, Leeuwenburgh C, Tanokura M, Denu JM, Prolla TA. Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction. Cell, 2010, 143(5): 802-812.[10] Panowski SH, Wolff S, Aguilaniu H, Durieux J, Dillin A. PHA-4/Foxa mediates diet-restriction-induced longevity of C. elegans. Nature, 2007, 447(7144): 550-555.[11] Carrano AC, Liu Z, Dillin A, Hunter T. A conserved ubiquitination pathway determines longevity in response to diet restriction. Nature, 2009, 460(7253): 396-399.[12] Kaestner KH. The FoxA factors in organogenesis and differentiation. Curr Opin Genet Dev, 2010, 20(5): 527-532.[13] Valente AJ, Zhou Q, Lu ZH, He WJ, Qiang M, Ma WQ, Li GM, Wang L, Banfi B, Steger K, Krause KH, Clark RA, Li SL. Regulation of NOX1 expression by GATA, HNF-1α, and Cdx transcription factors. Free Radic Biol Med, 2008, 44(3): 430-443.[14] Trott DW, Seawright JW, Luttrell MJ, Woodman CR. NAD (P)H oxidase-derived reactive oxygen species contribute to age-related impairments of endothelium-dependent dilation in rat soleus feed arteries. J Appl Physiol, 2011, 110(5): 1171-1180.[15] Kuroda J, Ago T, Matsushima S, Zhai PY, Schneider MD, Sadoshima J. NADPH oxidase 4 (Nox4) is a major source of oxidative stress in the failing heart. Proc Natl Acad Sci USA, 2010, 107(35): 15565-15570.[16] 李虹, 白小涓, 刘强, 王宁夫. siRNA靶向沉默p22phox表达对内皮细胞衰老抑制作用的研究. 遗传, 2008, 30(9): 1175-1181.[17] Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medrano EE, Linskens M, Rubelj I, Pereira-Smith O, Peacocke M, Campisi J. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA, 1995, 92(20): 9363-9367.[18] Masoro EJ. Caloric restriction and aging: an update. Exp Gerontol, 2000, 35(3): 299-305.[19] Chávez V, Mohri-Shiomi A, Maadan |