[1] Edson MA, Lin YN, Matzuk MM. Deletion of the novel oocyte-enriched gene, Gpr149, leads to increased fertility in mice. Endocrinology, 2010, 151(1): 358-368.[2] Goldman RD. Drug-induced gynecomastia in children and adolescents. Can Fam Physician, 2010, 56(4): 344-345.[3] Islam SK, Hossain KJ, Kamal M, Ahsan M. Serum immunoglobulins and white blood cells status of drug addicts: influence of illicit drugs and sex habit. Addict Biol, 2004, 9(1): 27-33.[4] Tanaka S, Shaikh IM, Chiocca EA, Saeki Y. The Gs-linked receptor GPR3 inhibits the proliferation of cerebellar granule cells during postnatal development. PLoS One, 2009, 4(6): e5922.[5] Thathiah A, Spittaels K, Hoffmann M, Staes M, Cohen A, Horré K, Vanbrabant M, Coun F, Baekelandt V, Delacourte A, Fischer DF, Pollet D, De Strooper B, Merchiers P. The orphan G protein-coupled receptor 3 modulates amyloid-beta peptide generation in neurons. Science, 2009, 323(5916): 946-951.[6] Valverde O, Célérier E, Baranyi M, Vanderhaeghen P, Maldonado R, Sperlagh B, Vassart G, Ledent C. GPR3 receptor, a novel actor in the emotional-like responses. PLoS One, 2009, 4(3): e4704.[7] Ruiz-Medina J, Ledent C, Valverde O. GPR3 orphan receptor is involved in neuropathic pain after peripheral nerve injury and regulates morphine-induced antinociception. Neuropharmacology, 2011, 61(1-2): 43-50.[8] Mehlmann LM, Saeki Y, Tanaka S, Brennan TJ, Evsikov AV, Pendola FL, Knowles BB, Eppig JJ, Jaffe LA. The Gs-linked receptor GPR3 maintains meiotic arrest in mammalian oocytes. Science, 2004, 306(5703): 1947-1950.[9] Ledent C, Demeestere I, Blum D, Petermans J, Hämäläinen T, Smits G, Vassart G. Premature ovarian aging in mice deficient for Gpr3. Proc Natl Acad Sci USA, 2005, 102(25): 8922-8926.[10] Saeki Y, Ueno S, Mizuno R, Nishimura T, Fujimura H, Nagai Y, Yanagihara T. Molecular cloning of a novel putative G protein-coupled receptor (GPCR21) which is expressed predominantly in mouse central nervous system. FEBS Lett, 1993, 336(2): 317-322.[11] Iismaa TP, Kiefer J, Liu ML, Baker E, Sutherland GR, Shine J. Isolation and chromosomal localization of a novel human G-protein-coupled receptor (GPR3) expressed predominantly in the central nervous system. Genomics, 1994, 24(2): 391-394.[12] Eggerickx D, Denef JF, Labbe O, Hayashi Y, Refetoff S, Vassart G, Parmentier M, Libert F. Molecular cloning of an orphan G-protein-coupled receptor that constitutively activates adenylate cyclase. Biochem J, 1995, 309(Pt 3): 837-843.[13] Libert F, Parmentier M, Lefort A, Dinsart C, Van Sande J, Maenhaut C, Simons MJ, Dumont JE, Vassart G. Selective amplification and cloning of four new members of the G protein-coupled receptor family. Science, 1989, 244(4904): 569-572.[14] Zimin AV, Delcher AL, Florea L, Kelley DR, Schatz MC, Puiu D, Hanrahan F, Pertea G, Van Tassell CP, Sonstegard TS, Marçais G, Roberts M, Subramanian P, Yorke JA, Salzberg SL. A whole-genome assembly of the domestic cow, Bos taurus. Genome Biol, 2009, 10(4): R42.[15] Zhang BL, Ding JH, Li Y, Wang JJ, Zhao YY, Wang W, Shi S, Dong FL, Zhang ZJ, Shi FX, Xu YX. The porcine Gpr3 gene: molecular cloning, characterization and expression level in tissues and cumulus-oocyte complexes during in vitro maturation. Mol Biol Rep, 2012, 39(5): 5831-5839.[16] Rovati GE, Capra V, Neubig RR. The highly conserved DRY motif of class A G protein-coupled receptors: beyond the ground state. Mol Pharmacol, 2007, 71(4): 959-964.[17] Aizaki Y, Maruyama K, Nakano-Tetsuka M, Saito Y. Distinct roles of the DRY motif in rat melanin-concentrating hormone receptor 1 in signaling control. Peptides, 2009, 30(5): 974-981.[18] Song ZH, Modi W, Bonner TI. Molecular cloning and chromosomal localization of human genes encoding three closely related G protein-coupled receptors. Genomics, 1995, 28(2): 347-349.[19] Marchese A, Docherty JM, Nguyen T, Heiber M, Cheng R, Heng HHQ, Tsui LC, Shi XM, George SR, O'Dowd BF. Cloning of human genes encoding novel G protein-coupled receptors. Genomics, 1994, 23(3): 609-618.[20] Zhang BL, Wei QW, Shi S, Dong FL, Shi FX, Xu YX. Immunolocalization and expression pattern of gpr3 in the ovary and its effect on proliferation of ovarian granulosa cells in pigs. J Reprod Dev, 2012, 58(4): 410-419.[21] Tanaka S, Ishii K, Kasai K, Yoon SO, Saeki Y. Neural expression of G protein-coupled receptors GPR3, GPR6, and GPR12 up-regulates cyclic AMP levels and promotes neurite outgrowth. J Biol Chem, 2007, 282(14): 10506-10515.[22] Wittenberger T, Hellebrand S, Munck A, Kreienkamp HJ, Schaller HC, Hampe W. GPR99, a new G protein-coupled receptor with homology to a new subgroup of nucleotide receptors. BMC Genomics, 2002, 3: 17.[23] Clemens JJ, Davis MD, Lynch KR, Macdonald TL. Synthesis of para-alkyl aryl amide analogues of sphingosine-1-phosphate: discovery of potent S1P receptor agonists. Bioorg Med Chem Lett, 2003, 13(20): 3401-3404.[24] Uhlenbrock K, Gassenhuber H, Kostenis E. Sphingosine 1-phosphate is a ligand of the human gpr3, gpr6 and gpr12 family of constitutively active G protein-coupled receptors. Cell Signal, 2002, 14(11): 941-953.[25] Zhang BL, Li Y, Ding JH, Dong FL, Hou YJ, Jiang BC, Shi FX, Xu YX. Sphingosine 1-phosphate acts as an activator for the porcine Gpr3 of constitutively active G protein-coupled receptors. J Zhejiang Univ Sci B, 2012, 13(7): 555-566.[26] Hinckley M, Vaccari S, Horner K, Chen R, Conti M. The G-protein-coupled receptors GPR3 and GPR12 are involved in cAMP signaling and maintenance of meiotic arrest in rodent oocytes. Dev Biol, 2005, 287(2): 249-261.[27] Jee BC, Jo JW, Suh CS, Kim SH. Dose-dependent effect of sphingosine-1-phosphate in mouse oocyte maturation medium on subsequent embryo development. Gynecol Obstet Invest, 2011, 72(1): 32-36.[28] Silver J, Miller JH. Regeneration beyond the glial scar. Nat Rev Neurosci, 2004, 5(2): 146-156.[29] Meyer-Franke A, Kaplan MR, Pfrieger FW, Barres BA. Characterization of the signaling interactions that promote the survival and growth of developing retinal ganglion cells in culture. Neuron, 1995, 15(4): 805-819.[30] Selkoe DJ. Alzheimer's disease is a synaptic failure. Science, 2002, 298(5594): 789-791.[31] Blacker D, Bertram L, Saunders AJ, Moscarillo TJ, Albert MS, Wiener H, Perry RT, Collins JS, Harrell LE, Go RCP, Mahoney A, Beaty T, Fallin MD, Avramopoulos D, Chase GA, Folstein MF, McInnis MG, Bassett SS, Doheny KJ, Pugh EW, Tanzi RE. Results of a high-resolution genome screen of 437 Alzheimer's disease families. Hum Mol Genet, 2003, 12(1): 23-32.[32] Altman J, Bayer SA. Embryonic development of the rat cerebellum. I. Delineation of the cerebellar primordium and early cell movements. J Comp Neurol, 1985, 231(1): 1-26.[33] Alder J, Cho NK, Hatten ME. Embryonic precursor cells from the rhombic lip are specified to a cerebellar granule neuron identity. Neuron, 1996, 17(3): 389-399.[34] Pons S, Trejo JL, Martínez-Morales JR, Martí E. Vitronectin regulates Sonic hedgehog activity during cerebellum development through CREB phosphorylation. Development, 2001, 128(9): 1481-1492.[35] Waschek JA, Dicicco-Bloom E, Nicot A, Lelievre V. Hedgehog signaling: new targets for GPCRs coupled to cAMP and protein kinase A. Ann NY Acad Sci, 2006, 1070: 120-128.[36] Miyazawa K, Himi T, Garcia V, Yamagishi H, Sato S, Ishizaki Y. A role for p27/Kip1 in the control of cerebellar granule cell precursor proliferation. J Neurosci, 2000, 20(15): 5756-5763.[37] Blendy JA. The role of CREB in depression and antidepressant treatment. Biol Psychiat, 2006, 59(12): 1144-1150.[38] Lecourtier L, Kelly PH. A conductor hidden in the orchestra? Role of the habenular complex in monoamine transmission and cognition. Neurosci Biobehav Rev, 2007, 31(5): 658-672.[39] Chamberlain B, Ervin FR, Pihl RO, Young SN. The effect of raising or lowering tryptophan levels on aggression in vervet monkeys. Pharmacol Biochem Behav, 1987, 28(4): 503-510.[40] Tourino C, Valjent E, Ruiz-Medina J, Herve D, Ledent C, Valverde O. The orphan receptor GPR3 modulates the early phases of cocaine reinforcement. Br J Pharmacol, 2012, 167(4): 892-904.[41] 谢益宽. 慢性痛的发生机理. 科学通报, 1999, 44(22): 2353-2362.[42] Watkins LR, Maier SF. Glia: a novel drug discovery target for clinical pain. Nat Rev Drug Discov, 2003, 2(12): 973-985.[43] Bura SA, Nadal X, Ledent C, Maldonado R, Valverde O. A2A adenosine receptor regulates glia proliferation and pain after peripheral nerve injury. Pain, 2008, 140(1): 95-103.[44] Mehlmann LM, Jones TL, Jaffe LA. Meiotic arrest in the mouse follicle maintained by a Gs protein in the oocyte. Science, 2002, 297(5585): 1343-1345.[45] Kalinowski RR, Berlot CH, Jones TLZ, Ross LF, Jaffe LA, Mehlmann LM. Maintenance of meiotic prophase arrest in vertebrate oocytes by a Gs protein-mediated pathway. Dev Biol, 2004, 267(1): 1-13.[46] Eppig JJ, Viveiros MM, Bivens CM, Fuente RDL. Regulation of mammalian oocyte maturation. In: The Ovary. New York: Raven Press, 2004: 113-129.[47] Horner K, Livera G, Hinckley M, Trinh K, Storm D, Conti M. Rodent oocytes express an active adenylyl cyclase required for meiotic arrest. Dev Biol, 2003, 258(2): 385-396.[48] Bornslaeger EA, Schultz RM. Adenylate cyclase activity in zona-free mouse oocytes. Exp Cell Res, 1985, 156(1): 277-281.[49] Downs SM, Buccione R, Eppig JJ. Modulation of meiotic arrest in mouse oocytes by guanyl nucleotides and modifiers of G-proteins. J Exp Zool, 1992, 262(4): 391-404.[50] Webb RJ, Marshall F, Swann K, Carroll J. Follicle-stimulating hormone induces a gap junction-dependent dynamic change in[cAMP] and protein kinase a in mammalian oocytes. Dev Biol, 2002, 246(2): 441-454.[51] De Haan L, Hirst TR. Cholera toxin: a paradigm for multi-functional engagement of cellular mechanisms (Review). Mol Membr Biol, 2004, 21(2): 77-92.[52] Gallo CJ, Hand AR, Jones TL, Jaffe LA. Stimulation of Xenopus oocyte maturation by inhibition of the G-protein alpha S subunit, a component of the plasma membrane and yolk platelet membranes. J Cell Biol, 1995, 130(2): 275-284.[53] Pirino G, Wescott MP, Donovan PJ. Protein kinase A regulates resumption of meiosis by phosphorylation of Cdc25B in mammalian oocytes. Cell Cycle, 2009, 8(4): 665-670.[54] Li ZQ, Zhang JB. Cell cycle regulation and tumor. Oncology Progress, 2004, 2(2): 146-150.[55] Duckworth BC, Weaver JS, Ruderman JV. G2 arrest in Xenopus oocytes depends on phosphorylation of cdc25 by protein kinase A. Proc Natl Acad Sci USA, 2002, 99(26): 16794-1679.[56] Lincoln AJ, Wickramasinghe D, Stein P, Schultz RM, Palko ME, De Miguel MP, Tessarollo L, Donovan PJ. Cdc25b phosphatase is required for resumption of meiosis during oocyte maturation. Nat Genet, 2002, 30(4): 446-449.[57] Stanford JS, Ruderman JV. Changes in regulatory phosphorylation of Cdc25C Ser287 and Wee1 Ser549 during normal cell cycle progression and checkpoint arrests. Mol Biol Cell, 2005, 16(12): 5749-5760.[58] Anderson E, Albertini DF. Gap junctions between the oocyte and companion follicle cells in the mammalian ovary. J Cell Biol, 1976, 71(2): 680-686.[59] Norris RP, Ratzan WJ, Freudzon M, Mehlmann LM, Krall J, Movsesian MA, Wang H, Ke H, Nikolaev VO, Jaffe LA. Cyclic GMP from the surrounding somatic cells regulates cyclic AMP and meiosis in the mouse oocyte. Development, 2009, 136(11): 1869-1878.[60] Norris RP, Freudzon L, Freudzon M, Hand AR, Mehlmann LM, Jaffe LA. A Gs-linked receptor maintains meiotic arrest in mouse oocytes, but luteinizing hormone does not cause meiotic resumption by terminating receptor-Gs signaling. Dev Biol, 2007, 310(2): 240-249. |