[1] Turner AG, Dwivedi PP, Anderson PH, May BK, Morris HA. Regulation of the 5'-flanking region of the human CYP27B1 gene in osteoblast cells. Mol Cell Endocrinol, 2009, 311(1-2): 55-61.[2] Wang HG, Wang XF, Jing XY, Li Z, Zhang Y, Lv ZJ. Effect of mutations in a simian virus 40 PolyA signal enhancer on green fluorescent protein reporter gene expression. Genet Mol Res, 2011, 10(3): 1866-1883.[3] Shen P, Niu G, Yao M H, Wang H Y, Fei J. Studying on the 19-bp palindrome repeats in human cytomegalovirus im-mediate early enhancer/promoter reveals their diversity in function for the promoter activity. J Biochem, 2007, 142(1): 25-31.[4] Leach DRF. Long DNA palindromes, cruciform structures, genetic instability and secondary structure repair. Bioessays, 1994, 16(12): 893-900.[5] Kato T, Kurahashi H, Emanuel BS. Chromosomal trans-locations and palindromic AT-rich repeats. Curr Opin Genet Dev, 2012, 22(3): 221-228.[6] Sinden RR, Zheng GX, Brankamp RG, Allen KN. On the deletion of inverted repeated DNA in Escherichia coli: effects of length, thermal stability, and cruciform formation in vivo. Genetics, 1991, 129(4): 991-1005.[7] Weston-Hafer K, Berg DE. Limits to the role of palin-dromy in deletion formation. J Bacteriol, 1991, 173(1): 315-318.[8] Kato T, Inagaki H, Kogo H, Ohye T, Yamada K, Emanuel BS, Kurahashi H. Two different forms of palindrome resolution in the human genome: deletion or translocation. Hum Mol Genet, 2008, 17(8): 1184-1191.[9] Tanaka H, Cao Y, Bergstrom DA, Kooperberg C, Tapscott SJ, Yao MC. Intrastrand annealing leads to the formation of a large DNA palindrome and determines the boundaries of genomic amplification in human cancer. Mol Cell Biol, 2007, 27(6): 1993-2002.[10] Bzymek M, Lovett ST. Evidence for two mechanisms of palindrome-stimulated deletion in Escherichia coli: single-strand annealing and replication slipped mispairing. Genetics, 2001, 158(2): 527-540.[11] Pinder DJ, Blake CE, Lindsey JC, Leach DR. Replication strand preference for deletions associated with DNA pal-indromes. Mol Microbiol, 1998, 28(4): 719-727.[12] Connelly JC, De Leau ES, Leach DRF. DNA cleavage and degradation by the SbcCD protein complex from Escherichia coli. Nucl Acids Res, 1999, 27(4): 1039-1046.[13] Cromie GA, Leach DR. Control of crossing over. Mol Cell, 2000, 6(4): 815-826.[14] Kurahashi H, Inagaki H, Ohye T, Kogo H, Tsutsumi M, Kato T, Tong M, Emanuel BS. The constitutional t(11;22): implications for a novel mechanism responsible for gross chromosomal rearrangements. Clin Genet, 2010, 78(4): 299-309.[15] Edelmann L, Spiteri E, Koren K, Pulijaal V, Bialer MG, Shanske A, Goldberg R, Morrow BE. AT-rich palindromes mediate the constitutional t(11;22) translocation. Am J Hum Genet, 2001, 68(1): 1-13.[16] Kurahashi H, Inagaki H, Kato T, Hosoba E, Kogo H, Ohye T, Tsutsumi M, Bolor H, Tong MQ, Emanuel BS. Impaired DNA replication prompts deletions within palindromic sequences, but does not induce translocations in human cells. Hum Mol Genet, 2009, 18(18): 3397-3406.[17] Kurahashi H, Inagaki H, Ohye T, Kogo H, Kato T, Emanuel BS. Palindrome-mediated chromosomal translo-cations in humans. DNA Repair, 2006, 5(9-10): 1136-1145.[18] Inagaki H, Ohye T, Kogo H, Yamada K, Kowa H, Shaikh TH, Emanuel BS, Kurahashi H. Palindromic AT-rich re-peat in the NF1 gene is hypervariable in humans and evo-lutionarily conserved in primates. Hum Mutat, 2005, 26(4): 332-342.[19] Gotter AL, Nimmakayalu MA, Jalali GR, Hacker AM, Vorstman J, Conforto Duffy D, Medne L, Emanuel BS. A palindrome-driven complex rearrangement of 22q11.2 and 8q24.1 elucidated using novel technologies. Genome Res, 2007, 17(4): 470-481.[20] Ohye T, Inagaki H, Kogo H, Tsutsumi M, Kato T, Tong MQ, Macville MV, Medne L, Zack |