遗传 ›› 2020, Vol. 42 ›› Issue (12): 1156-1167.doi: 10.16288/j.yczz.20-233
史佳宾1,2,3, 王大勇1,2,3, 夏晴1,2,3, 高旭1,2,3()
收稿日期:
2020-07-21
修回日期:
2020-10-21
出版日期:
2020-12-17
发布日期:
2020-10-28
通讯作者:
高旭
E-mail:gaoxu_671227@163.com
基金资助:
Jiabin Shi1,2,3, Dayong Wang1,2,3, Qing Xia1,2,3, Xu Gao1,2,3()
Received:
2020-07-21
Revised:
2020-10-21
Online:
2020-12-17
Published:
2020-10-28
Contact:
Gao Xu
E-mail:gaoxu_671227@163.com
Supported by:
摘要:
6-甲基腺嘌呤(N 6-methyladenosine, m 6A)是一种重要的RNA修饰,参与细胞内mRNA的整个代谢活动,调控基因的表达,调节多种生物过程,在大脑组织中丰度较高。稳定的m 6A修饰有助于胚胎大脑发育、记忆力的形成,在维持中枢神经系统的功能中起到重要作用。当m 6A修饰水平及相关蛋白表达水平发生改变时,将会引起神经系统功能异常,包括脑组织发育迟缓、轴突再生能力障碍、记忆力改变以及干细胞更新和分化紊乱等。近年来的研究还发现,m 6A修饰及其相关蛋白在阿尔茨海默症、帕金森症、脆性X染色体综合征、抑郁症和胶质母细胞瘤等众多神经系统疾病的发展进程中扮演关键角色。本文主要综述了近年来在中枢神经系统中m 6A修饰调控机制研究的相关进展,重点介绍了m 6A修饰介导的基因表达调控对中枢神经系统生物学功能以及多种相关疾病的影响,以期为中枢神经系统疾病提供新的研究靶点和治疗方向。
史佳宾, 王大勇, 夏晴, 高旭. m 6A修饰对中枢神经系统功能及疾病的影响[J]. 遗传, 2020, 42(12): 1156-1167.
Jiabin Shi, Dayong Wang, Qing Xia, Xu Gao. The effects of m 6A modification in central nervous system function and disease[J]. Hereditas(Beijing), 2020, 42(12): 1156-1167.
表1
m6A修饰的相关酶在中枢神经系统中的功能与作用"
类别 | 基因 | 功能 | 作用 | 参考文献 |
---|---|---|---|---|
甲基化转移酶 (Writers) | METTL3 | 影响Dapk1、Fadd、Ngfr的mRNA半衰期 | METTL3缺失可使m6A修饰异常,导致小脑发育不全、长期记忆能力减弱,影响干细胞的自我更新和分化 | [10] |
METTL14 | 识别并影响Pten蛋白的翻译 | METTL14敲除可影响轴突再生能力 | [11] | |
ZC3h13 | ZC3h13使Zc3h13-WTAP-Virilizer-Hakai复合物留在核内,提高mESC内的mRNA m6A修饰水平 | ZC3h13敲除将导致复合物从细胞核转移到细胞质,使m6A水平降低,破坏mESC自我更新并诱导进行分化 | [12] | |
去甲基化转移酶 (Erasers) | FTO | FTO可抑制突触神经节中Syp基因mRNA的转录,降低Spy的蛋白水平 | 降低FTO的表达后可提高Syp蛋白水平,从而提高记忆能力 | [13] |
识别蛋白 (Readers) | YTHDF1 | YTHDF1识别并结合发生m6A修饰的GRIN1、GRIN2A、GRIA1、CAMK2A、CAMK2B基因的mRNA,促进翻译过程 | YTHDF1缺失引起相关蛋白的翻译异常,导致记忆力下降 | [14] |
YTHDF3 | YTHDF3可特异性识别胞浆中发生m6A修饰的Apc基因mRNA,与YTHDF1共同调控翻译过程 | YTHDF1和YTHDF3缺失引起Apc蛋白翻译异常,可导致神经元发育异常,突触传递能力降低 | [15] |
[1] | Wang TG, Ye M . Advances on the roles of m 6A in tumorigenesis . Hereditas(Beijing), 2018,40(12):1055-1065. |
王天工, 叶孟 . m 6A甲基化与肿瘤研究进展 . 遗传, 2018,40(12):1055-1065. | |
[2] | Fu Y, Dominissini D, Rechavi G, He C . Gene expression regulation mediated through reversible m 6A RNA methylation . Nat Rev Genet, 2014,15(5):293-306. |
[3] | Yang Y, Chen YS, Sun BF, Yang YG . RNA methylation: regulations and mechanisms. Hereditas (Beijing), 2018,40(11):964-976. |
杨莹, 陈宇晟, 孙宝发, 杨运桂 . RNA甲基化修饰调控和规律. 遗传, 2018,40(11):964-976. | |
[4] | Zhang X, Jia GF . RNA epigenetic modification: N 6- methyladenosine . Hereditas (Beijing), 2016,38(4):275-288. |
张笑, 贾桂芳 . RNA表观遗传修饰: N 6-甲基腺嘌呤 . 遗传, 2016,38(4):275-288. | |
[5] | Wang X, Feng J, Xue Y, Guan ZY, Zhang DL, Liu Z, Gong Z, Wang Q, Huang JB, Tang C, Zou TT, Yin P . Structural basis of N(6)-adenosine methylation by the METTL3- METTL14 complex. Nature, 2016,534(7608):575-578. |
[6] | Ping XL, Sun BF, Wang L, Xiao W, Yang X, Wang WJ, Adhikari S, Shi Y, Lv Y, Chen YS, Zhao X, Li A, Yang Y, Dahal U, Lou XM, Liu X, Huang J, Yuan WP, Zhu XF, Cheng T, Zhao YL, Wang XQ, Rendtlew Danielsen JM, Liu F, Yang YG . Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res, 2014,24(2):177-189. |
[7] | van Tran N, Ernst FGM, Hawley BR, Zorbas C, Ulryck N, Hackert P, Bohnsack KE, Bohnsack MT, Jaffrey SR, Graille M, Lafontaine DLJ . The human 18S rRNA m 6A methyltransferase METTL5 is stabilized by TRMT112 . Nucleic Acids Res, 2019,47(15):7719-7733. |
[8] | Pendleton KE, Chen BB, Liu KQ, Hunter OV, Xie Y, Tu BP, Conrad NK. The U6 snRNA m 6A methyltransferase METTL16 regulates SAM synthetase intron retention. Cell, 2017, 169(5): 824-835.e14. |
[9] | Mendel M, Chen KM, Homolka D, Gos P, Pandey RR, McCarthy AA, Pillai RS. Methylation of structured RNA by the m 6A writer METTL16 is essential for mouse embryonic development. Mol Cell, 2018, 71(6): 986-1000. e11. |
[10] | Wang CX, Cui GS, Liu XY, Xu K, Wang M, Zhang XX, Jiang LY, Li A, Yang Y, Lai WY, Sun BF, Jiang GB, Wang HL, Tong WM, Li W, Wang XJ, Yang YG, Zhou Q . METTL3-mediated m 6A modification is required for cerebellar development . PLoS Biol, 2018,16(6):e2004880. |
[11] | Weng YL, Wang X, An R, Cassin J, Vissers C, Liu YY, Liu YJ, Xu TL, Wang XY, Wong SZH, Joseph J, Dore LC, Dong Q, Zheng W, Jin P, Wu H, Shen B, Zhuang XX, He C, Liu K, Song HJ, Ming GL. Epitranscriptomic m 6A regulation of axon regeneration in the adult mammalian nervous system. Neuron, 2018,97(2): 313-325.e6. |
[12] | Wen J, Lv RT, Ma HH, Shen HJ, He CX, Wang JH, Jiao FF, Liu H, Yang PY, Tan L, Lan F, Shi YG, He C, Shi Y, Diao JB. Zc3h13 regulates nuclear RNA m 6A methylation and mouse embryonic stem cell self-renewal. Mol Cell, 2018, 69(6): 1028-1038.e6. |
[13] | Walters BJ, Mercaldo V, Gillon CJ, Yip M, Neve RL, Boyce FM, Frankland PW, Josselyn SA . The role of the RNA demethylase FTO (fat mass and obesity-associated) and mRNA methylation in hippocampal memory formation. Neuropsychopharmacology, 2017,42(7):1502-1510. |
[14] | Shi HL, Zhang XL, Weng YL, Lu ZY, Liu YJ, Lu ZK, Li JN, Hao PL, Zhang Y, Zhang F, Wu Y, Delgado JY, Su YJ, Patel MJ, Cao XH, Shen B, Huang XX, Ming GL, Zhuang XX, Song HJ, He C , Zhou T. m 6A facilitates hippocampus- dependent learning and memory through YTHDF1 . Nature, 2018,563(7730):249-253. |
[15] | Merkurjev D, Hong WT, Iida K, Oomoto I, Goldie BJ, Yamaguti H, Ohara T, Kawaguchi SY, Hirano T, Martin KC, Pellegrini M, Wang DO . Synaptic N 6-methyladenosine (m 6A) epitranscriptome reveals functional partitioning of localized transcripts . Nat Neurosci, 2018,21(7):1004-1014. |
[16] | Zheng GQ, Dahl JA, Niu YM, Fedorcsak P, Huang CM, Li CJ, Vågbø CB, Shi Y, Wang WL, Song SH, Lu ZK, Bosmans RPG, Dai Q, Hao YJ, Yang X, Zhao WM, Tong WM, Wang XJ, Bogdan F, Furu K, Fu Y, Jia GF, Zhao X, Liu J, Krokan HE, Klungland A, Yang YG, He C . ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell, 2013,49(1):18-29. |
[17] | Jia GF, Fu Y, Zhao X, Dai Q, Zheng GQ, Yang Y, Yi CQ, Lindahl T, Pan T, Yang YG, He C . N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol, 2011,7(12):885-887. |
[18] | Li LP, Zang LQ, Zhang FR, Chen JC, Shen H, Shu LQ, Liang F, Feng CY, Chen D, Tao HK, Xu TL, Li ZY, Kang Y, Wu H, Tang LC, Zhang PM, Jin P, Shu Q, Li XK . Fat mass and obesity-associated (FTO) protein regulates adult neurogenesis. Hum Mol Genet, 2017,26(13):2398-2411. |
[19] | Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, Lindgren CM, Perry JRB, Elliott KS, Lango H, Rayner NW, Shields B, Harries LW, Barrett JC, Ellard S, Groves CJ, Knight B, Patch AM, Ness AR, Ebrahim S, Lawlor DA, Ring SM, Ben-Shlomo Y, Jarvelin MR, Sovio U, Bennett AJ, Melzer D, Ferrucci L, Loos RJF, Barroso I, Wareham NJ, Karpe F, Owen KR, Cardon LR, Walker M, Hitman GA, Palmer CNA, Doney ASF, Morris AD, Smith GD, Hattersley AT, McCarthy MI. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science, 2007,316(5826):889-894. |
[20] | Scuteri A, Sanna S, Chen WM, Uda M, Albai G, Strait J, Najjar S, Nagaraja R, Orrú M, Usala G, Dei M, Lai S, Maschio A, Busonero F, Mulas A, Ehret GB, Fink AA, Weder AB, Cooper RS, Galan P, Chakravarti A, Schlessinger D, Cao A, Lakatta E, Abecasis GR. Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. PLoS Genet, 2007,3(7):e115. |
[21] | Fu Y, Jia GF, Pang XQ, Wang RN, Wang X, Li CJ, Smemo S, Dai Q, Bailey KA, Nobrega MA, Han KL, Cui Q, He C . FTO-mediated formation of N6-hydroxymethyladenosine and N6-formyladenosine in mammalian RNA. Nate Commun, 2013,4:1798. |
[22] | Wei JB, Liu FG, LuK Z, Fei QL, Ai YX, He PC, Shi HL, Cui XL, Su R, Klungland A, Jia GF, Chen JJ, He C. Differential m 6A, m6Am,m 1A demethylation mediated by FTO in the cell nucleus and cytoplasm. Mol Cell, 2018,71(6): 973-985.e5. |
[23] | Wang X, Lu ZK, Gomez A, Hon GC, Yue YN, Han DL, Fu Y, Parisien M, Dai Q, Jia GF, Ren B, Pan T, He C . N6-methyladenosine-dependent regulation of messenger RNA stability. Nature, 2014,505(7481):117-120. |
[24] | Huang HL, Weng HY, Sun WJ, Qin X, Shi HL, Wu HZ, Zhao BS, Mesquita A, Liu C, Yuan CL, Hu YC, Huttelmaier S, Skibbe JR, Su R, Deng XL, Dong L, Sun M, Li CY, Nachtergaele S, Wang YG, Hu C, Ferchen K, Greis KD, Jiang X, Wei MJ, Qu LH, Guan JL, He C, Yang JH, Chen JJ . Recognition of RNA N 6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation . Nat Cell Biol, 2018,20(3):285-295. |
[25] | Alarcon CR, Goodarzi H, Lee H, Liu XH, Tavazoie S, Tavazoie SF . HNRNPA2B1 is a mediator of m 6A-dependent nuclear RNA processing events . Cell, 2015,162(6):1299-1308. |
[26] | Alarcón CR, Lee H, Goodarzi H, Halberg N, Tavazoie SF . N6-methyladenosine marks primary microRNAs for processing. Nature, 2015,519(7544):482-485. |
[27] | Kasowitz SD, Ma J, Anderson SJ, Leu NA, Xu Y, Gregory BD, Schultz RM, Wang PJ . Nuclear m 6A reader YTHDC1 regulates alternative polyadenylation and splicing during mouse oocyte development . PLoS Genet, 2018,14(5):e1007412. |
[28] | Covelo-Molares H, Bartosovic M, Vanacova S . RNA methylation in nuclear pre-mRNA processing. Wiley Interdiscip Rev RNA, 2018,9(6):e1489. |
[29] | Zheng CX, Ma XF, Zhang YH, Li HJ, Zhang GF . Research progress in the mechanism of translation initiation of eukaryotic mRNAs. Hereditas (Beijing), 2018,40(8):607-619. |
郑超星, 马小凤, 张永华, 李洪杰, 张根发 . 真核生物mRNA翻译起始机制研究进展. 遗传, 2018,40(8):607-619. | |
[30] | Wang X, Zhao BS, Roundtree IA, Lu ZK, Han DL, Ma HH, Weng XC, Chen K, Shi HL, He C . N(6)-methyladenosine modulates messenger RNA translation efficiency. Cell, 2015,161(6):1388-1399. |
[31] | Lin SB, Choe J, Du P, Triboulet R, Gregory RI . The m 6A methyltransferase METTL3 promotes translation in human cancer cells . Mol Cell, 2016,62(3):335-345. |
[32] | Du H, Zhao Y, He JQ, Zhang Y, Xi HR, Liu MF, Ma JB, Wu LG . YTHDF2 destabilizes m 6A-containing RNA through direct recruitment of the CCR4-NOT deadenylase complex . Nat Commun, 2016,7:12626. |
[33] | Zhao BS, Wang X, Beadell AV, Lu ZK, Shi HL, Kuuspalu A, Ho RK , He C. m 6A-dependent maternal mRNA clearance facilitates zebrafish maternal-to-zygotic transition . Nature, 2017,542(7642):475-478. |
[34] | Chang MQ, Lv HY, Zhang WL, Ma CH, He X, Zhao SL, Zhang ZW, Zeng YX, Song SH, Niu YM, Tong WM . Region-specific RNA m 6A methylation represents a new layer of control in the gene regulatory network in the mouse brain . Open Biol, 2017,7(9):170166. |
[35] | Li MM, Zhao X, Wang W, Shi HL, Pan QF, Lu ZK, Perez SP, Suganthan R, He C, Bjøorås M, Klungland A . Ythdf2- mediated m 6A mRNA clearance modulates neural development in mice . Genome Bioly, 2018,19(1):69. |
[36] | Zhang ZY, Wang M, Xie DF, Huang ZH, Zhang LS, Yang Y, Ma DX, Li WG, Zhou Q, Yang YG, Wang XJ . METTL3- mediated N 6-methyladenosine mRNA modification enhances long-term memory consolidation . Cell Res, 2018,28(11):1050-1061. |
[37] | Batista PJ, Molinie B, Wang JK, Qu K, Zhang JJ, Li LJ, Bouley DM, Lujan E, Haddad B, Daneshvar K, Carter AC, Flynn RA, Zhou C, Lim KS, Dedon P, Wernig M, Mullen AC, Xing Y, Giallourakis CC , Chang HY. m 6A RNA modification controls cell fate transition in mammalian embryonic stem cells . Cell Stem Cell, 2014,15(6):707-719. |
[38] | Wang Y, Li Y, Yue MH, Wang J, Kumar S, Wechsler-Reya RJ, Zhang ZL, Ogawa Y, Kellis M, Duester G, Zhao JC . N 6-methyladenosine RNA modification regulates embryonic neural stem cell self-renewal through histone modifications . Nat Neurosci, 2018,21(2):195-206. |
[39] | Cao YH, Zhuang YL, Chen JC, Xu WZ, Shou YK, Huang XL, Shu Q, Li XK . Dynamic effects of Fto in regulating the proliferation and differentiation of adult neural stem cells of mice. Hum Mol Genet, 2020,29(5):727-735. |
[40] | Spychala A, Rüther U . FTO affects hippocampal function by regulation of BDNF processing. PLoS One, 2019,14(2):e0211937. |
[41] | Citri A, Malenka RC . Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology, 2008,33(1):18-41. |
[42] | Perea G, Navarrete M, Araque A . Tripartite synapses: astrocytes process and control synaptic information. Trends Neurosci, 2009,32(8):421-431. |
[43] | Bassell GJ, Warren ST . Fragile X syndrome: loss of local mRNA regulation alters synaptic development and function. Neuron, 2008,60(2):201-214. |
[44] | Kelleher RJ, Govindarajan A, Tonegawa S . Translational regulatory mechanisms in persistent forms of synaptic plasticity. Neuron, 2004,44(1):59-73. |
[45] | Gouras GK, Tampellini D, Takahashi RH, Capetillo-Zarate E . Intraneuronal beta-amyloid accumulation and synapse pathology in Alzheimer's disease. Acta Neuropathol, 2010,119(5):523-541. |
[46] | Brier MR, Gordon B, Friedrichsen K, McCarthy J, Stern A, Christensen J, Owen C, Aldea P, Su Y, Hassenstab J, Cairns NJ, Holtzman DM, Fagan AM, Morris JC, Benzinger TLS, Ances BM. Tau and Aβ imaging, CSF measures, cognition in Alzheimer's disease. Sci Transl Med, 2016, 8(338): 338ra66. |
[47] | Fitzpatrick AWP, Falcon B, He SD, Murzin AG, Murshudov G, Garringer HJ, Crowther RA, Ghetti B, Goedert M, Scheres SHW . Cryo-EM structures of tau filaments from Alzheimer's disease. Nature, 2017,547(7662):185-190. |
[48] | Zhao X, Yang Y, Sun BF, Zhao YL, Yang YG . FTO and obesity: mechanisms of association. Curr Diab Rep, 2014,14(5):486. |
[49] | Li HJ, Ren Y, Mao KS, Hua F, Yang YL, Wei N, Yue CX, Li DW, Zhang H . FTO is involved in Alzheimer's disease by targeting TSC1-mTOR-Tau signaling. Biochem Biophys Res Commun, 2018,498(1):234-239. |
[50] | Han M, Liu Z, Xu YY, Liu XT, Wang DW, Li F, Wang Y, Bi JZ . Abnormality of m 6A mRNA methylation is involved in Alzheimer’s disease . Front Neurosci, 2020,14:98. |
[51] | Chen XC, Yu CY, Guo MJ, Zheng XT, Ali S, Huang H, Zhang LH, Wang SS, Huang YH, Qie SY, Wang J . Down-regulation of m 6A mRNA methylation is involved in dopaminergic neuronal death . ACS Chem Neurosci, 2019,10(5):2355-2363. |
[52] | Zhang FR, Kang Y, Wang ML, Li YJ, Xu TL, Yang W, Song HJ, Wu H, Shu Q, Jin P . Fragile X mental retardation protein modulates the stability of its m 6A-marked messenger RNA targets . Hum Mol Genet, 2018,27(22):3936-3950. |
[53] | Du TF, Rao SQ, Wu L, Ye N, Liu ZY, Hu HL, Xiu JB, Shen Y, Xu Q . An association study of the m 6A genes with major depressive disorder in chinese han population . J Affect Disord, 2015,183:279-286. |
[54] | Huang RR, Zhang Y, Bai Y, Han B, Ju MZ, Chen BL, Yang L, Wang Y, Zhang HX, Zhang HS, Xie CM, Zhang ZJ, Yao HH . N 6-methyladenosine modification of fatty acid amide hydrolase messenger RNA in circular RNA STAG1-regulated astrocyte dysfunction and depressive-like behaviors . Biol Psychiatry, 2020,88(5):392-404. |
[55] | Li YL, Yu J, Song SH . Recent progresses in RNA N6-methyladenosine research. Hereditas(Beijing), 2013,35(12):1340-1351. |
李语丽, 于军, 宋述慧 . RNA中6-甲基腺嘌呤的研究进展. 遗传, 2013,35(12):1340-1351. | |
[56] | Rauch S, He C, Dickinson BC . Targeted m 6A reader proteins to study epitranscriptomic regulation of single RNAs . J Am Chem Soc, 2018,140(38):11974-11981. |
[57] | Liu XM, Zhou J, Mao YH, Ji QQ, Qian SB . Programmable RNA N 6-methyladenosine editing by CRISPR-Cas9 conjugates . Nat Chem Biol, 2019,15(9):865-871. |
[58] | Wilson C, Chen PJ, Miao Z, Liu DR . Programmable m 6 A modification of cellular RNAs with a Cas13-directed methyltransferase . Nat Biotechnol, 2020, doi: 10.1038/s41587-020-0572-6. |
[1] | 田智琛, 尹晓娟. 诱导多能干细胞在儿童疾病的应用研究进展[J]. 遗传, 2023, 45(1): 42-51. |
[2] | 郭彦, 杨乐乐, 戚华宇. 小鼠雄性生殖干细胞转录组分析揭示成熟精原干细胞特征[J]. 遗传, 2022, 44(7): 591-608. |
[3] | 熊婉迪, 徐开宇, 陆林, 李家立. 长链非编码RNA在阿尔茨海默病中的研究进展[J]. 遗传, 2022, 44(3): 189-197. |
[4] | 余志鑫, 李鹏宇, 李凯, 缪时英, 王琳芳, 宋伟. 精原干细胞微环境研究进展[J]. 遗传, 2022, 44(12): 1103-1116. |
[5] | 张祉靖, 乔钰, 孙宇晨, 雷蕾. 表观“阅读器”BET蛋白家族对哺乳动物发育和iPSC重编程的调控[J]. 遗传, 2022, 44(1): 36-45. |
[6] | 袁洁, 蔡时青. 衰老过程中行为和认知功能退化的调控机制研究[J]. 遗传, 2021, 43(6): 545-570. |
[7] | 王剑飞, 韩俊海, 张子超. 孤独症谱系障碍小鼠模型行为学检测方法[J]. 遗传, 2021, 43(5): 501-519. |
[8] | 张春霞, 刘峰. 造血干细胞发育过程中的信号通路调控[J]. 遗传, 2021, 43(4): 295-307. |
[9] | 王冰源, 牟玉莲, 李奎, 刘志国. 农业动物干细胞研究进展[J]. 遗传, 2020, 42(11): 1073-1080. |
[10] | 赵鑫,杨化强. 大动物精原干细胞研究进展[J]. 遗传, 2019, 41(8): 686-702. |
[11] | 谢晶, 范辰, 张景龙, 张仕强. Ash2l-1/Ash2l-2在小鼠胚胎干细胞中的表达特异性及互补效应[J]. 遗传, 2018, 40(3): 237-249. |
[12] | 李夏, 滑慧娟, 郝捷, 王柳, 刘忠华. 利用微载体悬浮培养人脐带间充质干细胞[J]. 遗传, 2018, 40(12): 1120-1128. |
[13] | 康岚, 陈嘉瑜, 高绍荣. 中国细胞重编程和多能干细胞研究进展[J]. 遗传, 2018, 40(10): 825-840. |
[14] | 刘亚军,张峰,刘宏德,孙啸. 下一代测序技术在干细胞转录调控研究中的应用[J]. 遗传, 2017, 39(8): 717-725. |
[15] | 包笑妹, 何晴, 王莹, 黄智慧, 袁增强. Hippo/YAP信号通路在神经系统中的作用及机制研究进展[J]. 遗传, 2017, 39(7): 630-641. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: