遗传 ›› 2020, Vol. 42 ›› Issue (7): 657-668.doi: 10.16288/j.yczz.20-092
陈赢男1,2, 陆静1,2
收稿日期:
2020-04-04
修回日期:
2020-05-25
出版日期:
2020-07-20
发布日期:
2020-06-15
作者简介:
陈赢男,博士,副教授,研究方向:林木遗传育种。E-mail: 基金资助:
Yingnan Chen1,2, Jing Lu1,2
Received:
2020-04-04
Revised:
2020-05-25
Online:
2020-07-20
Published:
2020-06-15
Supported by:
摘要:
CRISPR/Cas9系统可以对目标基因进行精确定点编辑,是目前公认的最有发展潜力的基因编辑技术,并已在主要粮食及经济作物的精准育种方面发挥了重要作用。CRISPR/Cas9系统的出现也为林木基础研究和分子育种带来了新的途径。近年来CRISPR/Cas9系统在林木遗传研究中的应用越来越广泛,不仅实现了抗旱、抗病等林木新品种的培育,而且在调控木质素合成和缩短林木育种周期等方面也展现了巨大潜力。本文详细梳理了CRISPR/Cas9系统在林木基因功能验证及遗传改良中的研究进展,并对未来需要完善的相关问题和发展趋势进行了展望,以期为林木功能基因组研究和林木基因工程育种提供有益参考。
勘误:CRISPR/Cas9系统在林木基因编辑中的应用
陈赢男, 陆静. CRISPR/Cas9系统在林木基因编辑中的应用[J]. 遗传, 2020, 42(7): 657-668.
Yingnan Chen, Jing Lu. Application of CRISPR/Cas9 mediated gene editing in trees[J]. Hereditas(Beijing), 2020, 42(7): 657-668.
表1
CRISPR/Cas9系统在杨树中的应用"
研究目的 | 杨树种名 | 基因 | sgRNA 数目 | Cas 9密码子 | 参考 文献 |
---|---|---|---|---|---|
CRISPR 技术体系 的建立 与探索 | 毛白杨 (Populus tomentosa Carr. clone 741) | PtoPDS | 4 | human codon-optimized Cas9 | [ |
银灰杨 (P. tremula × alba clone 717-1B4) ; 欧美山杨 (P. tremula × tremuloides clone 353-38) | LEAFY、AGAMOUS | 1~2 | human codon-optimized Cas9 | [ | |
银灰杨 (P. × canescens poplar clone INRA 717-1B4); 欧洲山杨 (P. tremula clone W52) | SOC1、SOC1 Paralog 1、SOC1 Paralog 2、AGL8.1、AGL8.2、NFP-like1-4、TOZ19 | 1~2 | Cas9 wild type gene (Streptococcus pyogenes) | [ | |
新疆杨 [P. alba var. pyramidalis (P. bolleana)] | C2H2‐AZF | 3 | plant codon-optimized Cas9 | [ | |
木质素及 类黄酮 合成 | 银灰杨 (P. tremula × alba clone 717-1B4) | 4CL1、4CL2 | 1 | plant codon-optimized Cas9 | [ |
毛白杨 (P. tomentosa Carr. clone 741) | MYB115 | 3 | plant codon-optimized Cas9 | [ | |
毛白杨 (P. tomentosa Carr. clone 741) | PtoMYB156 | 3 | plant codon-optimized Cas9 | [ | |
毛白杨 (P. tomentosa Carr. clone 741) | PtoMYB170 | 3 | plant codon-optimized Cas9 | [ | |
毛白杨 (P. tomentosa Carr. clone 741) | PtrMYB57 | 3 | plant codon-optimized Cas9 | [ | |
毛白杨 (P. tomentosa Carr. clone 741) | JMJ25 | 1 | plant codon-optimized Cas9 | [ | |
毛白杨 (P. tomentosa Carr. clone 741) | MYB189 | 2 | plant codon-optimized Cas9 | [ | |
木质部 发育 | 毛白杨 (P. tomentosa Carr. clone 741) | PtoDWF4 | 3 | plant codon-optimized Cas9 | [ |
欧美山杨 (P. tremula L.× P. tremuloides clone T89) | Pt×tvns09、vns10、 vns11、vns12 | 1 | Arabidopsis codon-optimized Cas9 | [ | |
毛白杨 (P. tomentosa Carr. clone 741) | PtoDET2 | 3 | plant codon-optimized Cas9 | [ | |
生长与 生长 节律 | 银灰杨 (P. tremula × alba clone INRA 717-1B4) | PcBRC1、PcBRC2 | 2 | plant codon-optimized Cas9 | [ |
银灰杨 (P. tremula × alba clone 717) | GNC | 1 | Arabidopsis codon-optimized Cas9 | [ | |
银灰杨 (P. tremula × alba INRA clone 717-1B4) | LHY2 | 1 | human codon-optimized Cas9 | [ | |
欧美山杨 (P. tremula× tremuloides clone T89) | BRC1 | 2 | maize-codon optimized Cas9 | [ | |
抗旱性状 | 毛果杨 (P. trichocarpa) | PtrADA2b-3 | 1 | Arabidopsis codon-optimized Cas9 | [ |
84K杨 (P. alba × P. glandulosa) | PdNF-YB21 | 1 | Arabidopsis codon-optimized Cas9 | [ | |
抗病性状 | 毛白杨 (P. tomentosa Carr. clone 741) | PtrWRKY18、PtrWRKY35 | 3 | plant codon-optimized Cas9 | [ |
酚甙类次生 代谢产物 | 银灰杨 (P. tremula× alba INRA 717-1B4) | UGT71L1 | 1 | Arabidopsis codon-optimized Cas9 | [ |
表2
CRISPR/Cas9系统在经济林木中的应用"
科 | 属 | 物种名称 | 外植体 | 遗传转化方法 | 靶基因 | 涉及性状 | 基因编辑 效率(%) | 参考文献 |
---|---|---|---|---|---|---|---|---|
芸香科 (Rutaceae) | 柑橘属 (Citrus) | 甜橙 (Citrus sinensis cv. Valencia) | 叶片 | 柑橘黄单胞菌 Xcc促进的农杆 菌注射法 | CsPDS | 影响叶绿素生物合成,产生白化苗 | 3.2~3.9 | [ |
晚锦橙 (C. sinensis Osbeck) | 上胚轴 | 农杆菌介导的 遗传转化 | CsLOB1 启动子 | 抗溃疡病 | 11.5~64.7 | [ | ||
葡萄柚 (C. paradisi) | 上胚轴 | 农杆菌介导的 遗传转化 | CsLOB1 启动子 | 抗溃疡病 | 14.29~81.25 | [ | ||
上胚轴 | 农杆菌介导的 遗传转化 | CsLOB1 | 抗溃疡病 | 31.58~89.36 | [ | |||
上胚轴 | 农杆菌介导的 遗传转化 | CsLOB1 | 抗溃疡病 | 15~55 | [ | |||
枳属 (Poncirus) | 枳橙 (Poncirus trifoliate L. Raf. × C. sinensis L. Osb.) | 上胚轴 | 农杆菌介导的 遗传转化 | PDS | 影响叶绿素生物合成,产生白化苗 | 45.5~75 | [ | |
上胚轴 | 农杆菌介导的 遗传转化 | Cs7g03360 | 叶片发育 | 15.55~79.67 | [ | |||
猕猴桃科 (Actinidiaceae) | 猕猴桃属 (Actinidia) | 红阳猕猴桃 (Actinidia chinensis cv. Hongyang) | 叶盘 | 农杆菌介导的 遗传转化 | AcPDS | 影响叶绿素生物合成,产生白化苗 | 65.38~91.67 | [ |
中华猕猴桃‘Hort16A’ (A. chinensis cv. Hort16A) | 叶盘 | 农杆菌介导的 遗传转化 | AcCEN4、 AcCEN | 开花提前,果实早熟、紧凑 | 30~75 | [ | ||
葡萄科 (Vitaceae) | 葡萄属 (Vitis) | ‘霞多丽’葡萄 (Vitis vinifera L. cv. Chardonnay) | 悬浮细胞 | 农杆菌介导的 遗传转化 | IdnDH | 降低酒石酸 含量 | 100 | [ |
无核白葡萄 (V. vinifera cv. Thompson) | 愈伤组织 | 农杆菌介导的 遗传转化 | VvWRKY52 | 抗灰霉病 | 31 | [ | ||
‘麝香’葡萄 (V. vinifera L. cv. Neo Muscat) | 愈伤组织 | 农杆菌介导的 遗传转化 | VvPDS | 产生白化植株 | 2.7~72.2 | [ | ||
‘葡萄砧木41B’ (V. vinifera cv. Chasselas × V. berlandieri) | 胚性悬浮 细胞 | 农杆菌介导的 遗传转化 | VvCCD8 | 增加分枝数 | 66.7 | [ | ||
‘霞多丽’葡萄 (V. vinifera L. cv. Chardonnay) | 原生质体 | PEG介导 RNP转化 | MLO-7 | 抗白粉病 | 0.1 | [ | ||
蔷薇科 (Rosaceae) | 苹果属 (Malus) | ‘金冠’苹果 (Malus prunifolia cv. Golden delicious) | 原生质体 | PEG介导 RNP转化 | DIPM-1、DIPM-2、DIPM-4 | 抗白粉病 | 0.1~6.9 | |
‘苹果砧木JM2’ (M. prunifolia (Wild.) Borkh. ‘Seishi’?×?M. pumila Mill. var. paradisiaca Schneid. ‘M.9’) | 叶盘 | 农杆菌介导的 遗传转化 | PDS | 影响叶绿素生物合成,产生白化苗 | 31.8 | [ | ||
'嘎啦'苹果 (Malus × domestica Bork.) | 嫩叶 | 农杆菌介导的 遗传转化 | MdPDS、MdTFL1.1 | 影响叶绿素生物合成,产生白化苗;也出现早花 | 85~93 | [ | ||
梨属 (Pyrus) | ‘康弗伦斯’梨 (Pyrus communis L. cv. ‘Conference’) | 嫩叶 | 农杆菌介导的 遗传转化 | PcTFL1.1 | 提前开花 | 9 | ||
石榴科 (Punicaceae) | 石榴属 (Punica) | 石榴 (Punica granatum L.) | 毛状根 | 发根农杆菌遗传 转化毛状根 | PgUGT84A23、PgUGT84A24 | 降低酚类物质安石榴苷含量 | - | [ |
茜草科 (Rubiaceae) | 咖啡属 (Coffea) | 中粒咖啡 (Coffea canephora clone 197) | 愈伤组织 | 农杆菌介导的 遗传转化 | CcPDS | 产生白化苗 | 30.4 | [ |
梧桐科 (Sterculiaceae) | 可可属 (Theobroma) | 可可 (Theobroma cacao) | 叶片 | 农杆菌介导的 遗传转化 | TcNPR3 | 抗疫霉菌 | 27 | [ |
大戟科 (Euphorbiaceae) | 木薯属 (Manihot) | 木薯 (Manihot esculenta cv. 60444; cv. TME 204) | 愈伤组织 | 农杆菌介导的 遗传转化 | MePDS | 影响叶绿素生物合成,产生白化苗 | 97.1~98.9 | [ |
木薯 (M. esculenta cv. 60444) | 愈伤组织 | 农杆菌介导的 遗传转化 | nCBP-1、 nCBP-2 | 抗木薯褐斑条纹病毒 | 91 | [ | ||
木薯 (M. esculenta) | 愈伤组织 | 农杆菌介导的 遗传转化 | 病毒基因AC2、AC3 | 抗非洲木薯花叶病毒 | 4.9~11 | [ | ||
橡胶树属 (Hevea) | 橡胶树 (Hevea brasiliensis) | 原生质体 | PEG介导 RNP转化 | FT、TFL1 | 提前开花 | 3.74~20.11 | [ | |
麻疯树属 (Jatropha) | 麻疯树 Jatropha curcas | 子叶 | 农杆菌介导的 遗传转化 | JcCYP735A | 生长和成花 调控 | - | [ | |
大麻科 (Cannabaceae) | 山豆麻属 (Parasponia) | Parasponia andersonii | 茎和叶柄 | 农杆菌介导的 遗传转化 | PanHK4、PanEIN2、PanNSP1、PanNSP2 | 根瘤形成、茎形成层活性、植株性别 | 48~89 | [ |
禾本科 (Poaceae) | 簕竹属 (Bambusa) | 绿竹 (Bambusa oldhamii) | 原生质体 | PEG介导质粒 DNA转化 | PDS | 影响叶绿素生物合成,产生白化苗 | 12.5 | [ |
牡竹属 (Dendrocalamus) | 麻竹 (Dendrocalamus latiflorus Munro) | 愈伤组织 | 农杆菌介导的 遗传转化 | DlmPSY1-A、DlmPSY1-B、DlmPSY1-C、GRG1 | 白化苗,株高增加 | 40~100 | [ |
[1] | Li JF, Norville JE, Aach J, McCormack M,Zhang DD,Bush J,Church GM,Sheen J. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol, 2013,31(8):688-691. |
[2] | Shan SC, Soltis PS, Soltis DE, Yang B . Considerations in adapting CRISPR/Cas9 in nongenetic model plant systems. Appl Plant Sci, 2020,8(1):e11314. |
[3] | Wang YP, Cheng X, Gao CX, Qiu JL . Wheat resistant to powdery mildew was developed by genome editing. Hereditas (Beijing), 2014,36(8):848. |
王延鹏, 程曦, 高彩霞, 邱金龙 . 利用基因组编辑技术创制抗白粉病小麦. 遗传, 2014,36(8):848. | |
[4] | Zhang DW, Zhang CF, Dong F, Huang YL, Zhang Y, Zhou H . Application of CRISPR/Cas9 system in breeding of new antiviral plant germplasm. Hereditas(Beijing), 2016,38(9):811-820. |
张道微, 张超凡, 董芳, 黄艳岚, 张亚, 周虹 . CRISPR/ Cas9系统在培育抗病毒植物新种质中的应用. 遗传, 2016,38(9):811-820. | |
[5] | Chen KL, Wang YP, Zhang R, Zhang HW, Gao CX . CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu Rev Plant Biol, 2019,70:667-697. |
[6] | Fan D, Liu TT, Li CF, Jiao B, Li S, Hou YS, Luo KM . Efficient CRISPR/Cas9-mediated targeted mutagenesis in Populus in the first generation. Sci Rep, 2015,5:12217. |
[7] | Zhou XH, Jacobs TB, Xue LJ, Harding SA, Tsai CJ . Exploiting SNPs for biallelic CRISPR mutations in the outcrossing woody perennial Populus reveals 4‐coumarate: CoA ligase specificity and redundancy. New Phytol, 2015,208(2):298-301. |
[8] | Elorriaga E, Klocko AL, Ma C, Strauss SH . Variation in mutation spectra among CRISPR/Cas9 mutagenized poplars. Front Plant Sci, 2018,9:594. |
[9] | Bruegmann T, Deecke K, Fladung M . Evaluating the efficiency of gRNAs in CRISPR/Cas9 mediated genome editing in poplars. Int J Mol Sci, 2019,20(15):3623. |
[10] | Ma JC, Wan DS, Duan BB, Bai XT, Bai QX, Chen NN, Ma T . Genome sequence and genetic transformation of a widely distributed and cultivated poplar. Plant Biotechnol J, 2019,17(2):451-460. |
[11] | Muhr M, Paulat M, Awwanah M, Brinkkötter M, Teichmann T . CRISPR/Cas9-mediated knockout of Populus BRANCHED1 and BRANCHED2 orthologs reveals a major function in bud outgrowth control. Tree Physiol, 2018,38(10):1588-1597. |
[12] | Takata N, Awano T, Nakata MT, Sano Y, Sakamoto S, Mitsuda N, Taniguchi T . Populus NST/SND orthologs are key regulators of secondary cell wall formation in wood fibers, phloem fibers and xylem ray parenchyma cells. Tree Physiol, 2019,39(4):514-525. |
[13] | Fan CF, Yu H, Qin SF, Li YL, Alam A, Xu CZ, Fan D, Zhang QW, Wang YT, Zhu WB, Peng LC, Luo KM . Brassinosteroid overproduction improves lignocellulose quantity and quality to maximize bioethanol yield under green-like biomass process in transgenic poplar. Biotechnol Biofuels, 2020,13(1):9. |
[14] | Wang LJ, Ran LY, Hou YS, Tian QY, Li CF, Liu R, Fan D, Luo KM . The transcription factor MYB115 contributes to the regulation of proanthocyanidin biosynthesis and enhances fungal resistance in poplar. New Phytol, 2017,215(1):351-367. |
[15] | Yang L, Zhao X, Ran LY, Li CF, Fan D, Luo KM . PtoMYB156 is involved in negative regulation of phenylpropanoid metabolism and secondary cell wall biosynthesis during wood formation in poplar. Sci Rep, 2017,7(1):41209. |
[16] | Xu CZ, Fu XK, Liu R, Guo L, Ran LY, Li CF, Tian QY, Jiao B, Wang BJ, Luo KM . PtoMYB170 positively regulates lignin deposition during wood formation in poplar and confers drought tolerance in transgenic Arabidopsis. Tree Physiol, 2017,37(12):1713-1726. |
[17] | Wan SZ, Li CF, Ma XD, Luo KM . PtrMYB57 contributes to the negative regulation of anthocyanin and proanthocyanidin biosynthesis in poplar. Plant Cell Rep, 2017,36(8):1263-1276. |
[18] | Fan D, Wang XQ, Tang XF, Ye X, Ren S, Wang DH, Luo KM . Histone H3K9 demethylase JMJ25 epigenetically modulates anthocyanin biosynthesis in poplar. Plant J, 2018,96(6):1121-1136. |
[19] | Jiao B, Zhao X, Lu WX, Guo L, Luo KM . The R2R3 MYB transcription factor MYB189 negatively regulates secondary cell wall biosynthesis in Populus. Tree Physiol, 2019,39(7):1187-1200. |
[20] | Shen Y, Li YL, Xu D, Yang C, Li CF, Luo KM . Molecular cloning and characterization of a brassinosteriod biosynthesis-related gene PtoDWF4 from Populus tomentosa. Tree Physiol, 2018,38(9):1424-1436. |
[21] | An Y, Zhou YY, Han X, Shen C, Wang S, Liu C, Yin WL, Xia XL . The GATA transcription factor GNC plays an important role in photosynthesis and growth in poplar. J Exp Bot, 2020,71(6):1969-1984. |
[22] | Ramos-Sánchez JM, Triozzi PM, Alique D, Geng F, Gao MJ, Jaeger KE, Wigge PA, Allona I, Perales M,. LHY2 integrates night-length information to determine timing of poplar photoperiodic growth. Curr Biol, 2019, 29(14): 2402-2406.e4. |
[23] | Maurya JP, Singh RK, Miskolczi PC, Prasad AN, Jonsson K, Wu F, Bhalerao RP. Branching regulator BRC1 mediates photoperiodic control of seasonal growth in hybrid aspen. Curr Biol, 2020, 30(1): 122-126. e2. |
[24] | Li S, Lin YJ, Wang PY, Zhang BF, Li M, Chen S, Shi R, Tunlaya-Anukit S, Liu XY, Wang ZF, Dai XF, Yu J, Zhou CG, Liu BG, Wang JP, Chiang VL, Li W . The AREB1 transcription factor influences histone acetylation to regulate drought responses and tolerance in Populus trichocarpa. Plant Cell, 2019,31(3):663-686. |
[25] | Zhou YY, Zhang Y, Wang XW, Han X, An Y, Lin SW, Shen C, Wen JL, Liu C, Yin WL, Xia XL . The root‐specific NF‐Y family transcription factor, PdNF‐YB21, positively regulates root growth and drought resistance by ABA‐ mediated IAA transport in Populus. New Phytol, 2020, doi: 10.1111/nph.16524. |
[26] | Jiang YZ, Guo L, Ma XD, Zhao X, Jiao B, Li CF, Luo KM . The WRKY transcription factors PtrWRKY18 and PtrWRKY35 promote Melampsora resistance in Populus. Tree Physiol, 2017,37(5):665-675. |
[27] | Fellenberg C, Corea O, Yan LH, Archinuk F, Piirtola EM, Gordon H, Reichelt M, Brandt W, Wulff J, Ehlting J, Peter Constabel C . Discovery of salicyl benzoate UDP‐ glycosyltransferase, a central enzyme in poplar salicinoid phenolic glycoside biosynthesis. Plant J, 2020,102(1):99-115. |
[28] | Johnson RA, Gurevich V, Filler S, Samach A, Levy AA . Comparative assessments of CRISPR-Cas nucleases’ cleavage efficiency in planta. Plant Mol Biol, 2015,87(1-2):143-156. |
[29] | Zhou JH, Li DD, Wang GM, Wang FX, Kunjal M, Joldersma D, Liu ZC . Application and future perspective of CRISPR/Cas9 genome editing in fruit crops. J Integr Plant Biol, 2020,62(3):269-286. |
[30] | Jia HG, Wang N . Targeted genome editing of sweet orange using Cas9/sgRNA. PLoS One, 2014,9(4):e93806. |
[31] | Peng AH, Chen SC, Lei TG, Xu LZ, He YR, Wu L, Yao LX, Zou XP . Engineering canker‐resistant plants through CRISPR/Cas9‐targeted editing of the susceptibility gene CsLOB1 promoter in citrus. Plant Biotechnol J, 2017,15(12):1509-1519. |
[32] | Zhang F, LeBlanc C,Irish VF,Jacob Y. Rapid and efficient CRISPR/Cas9 gene editing in Citrus using the YAO promoter. Plant Cell Rep, 2017,36(12):1883-1887. |
[33] | Jia HG, Orbovic V, Jones JB, Wang N . Modification of the PthA4 effector binding elements in Type I CsLOB1 promoter using Cas9/sg RNA to produce transgenic Duncan grapefruit alleviating XccΔpthA4: dCs LOB 1.3 infection. Plant Biotechnol J, 2016,14(5):1291-1301. |
[34] | Jia HG, Zhang YZ, Orbović V, Xu J, White FF, Jones JB, Wang N . Genome editing of the disease susceptibility gene CsLOB1 in citrus confers resistance to citrus canker. Plant Biotechnol J, 2017,15(7):817-823. |
[35] | Jia HG, Xu J, Orbović V, Zhang YZ, Wang N . Editing citrus genome via SaCas9/sgRNA system. Front Plant Sci, 2017,8:2135. |
[36] | Jia HG, Orbović V, Wang N . CRISPR‐LbCas12a‐mediated modification of citrus. Plant Biotechnol J, 2019,17(10):1928-1937. |
[37] | Liu GY, Li GS, Zhang YL, Chen LT . Current advances on CRISPR/Cas genome editing technologies in plants. J South Chin Agric Univ, 2019,40(5):38-49. |
刘耀光, 李构思, 张雅玲, 陈乐天 . CRISPR/Cas植物基因组编辑技术研究进展. 华南农业大学学报, 2019,40(5):38-49. | |
[38] | Wang ZP, Wang SB, Li DW, Zhang Q, Li L, Zhong CH, Liu YF, Huang HW . Optimized paired‐sgRNA/Cas9 cloning and expression cassette triggers high‐efficiency multiplex genome editing in kiwifruit. Plant Biotechnol J, 2018,16(8):1424-1433. |
[39] | Xie KB, Minkenberg B, Yang YN . Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proc Natl Acad Sci USA, 2015,112(11):3570-3575. |
[40] | Varkonyi‐Gasic E, Wang TC, Voogd C, Jeon S, Drummond RSM, Gleave AP, Allan AC . Mutagenesis of kiwifruit CENTRORADIALIS‐like genes transforms a climbing woody perennial with long juvenility and axillary flowering into a compact plant with rapid terminal flowering. Plant Biotechnol J, 2019,17(5):869-880. |
[41] | Wang Y, Liu XJ, Ren C, Zhong GY, Yang L, Li SH, Liang ZC . Identification of genomic sites for CRISPR/Cas9- based genome editing in the Vitis vinifera genome. BMC Plant Biol, 2016,16(1):96. |
[42] | Ren C, Liu XJ, Zhang Z, Wang Y, Duan W, Li SH, Liang ZC . CRISPR/Cas9-mediated efficient targeted mutagenesis in Chardonnay ( Vitis vinifera L.). Sci Rep, 2016,6:32289. |
[43] | Nakajima I, Ban Y, Azuma A, Onoue N, Moriguchi T, Yamamoto T, Toki S, Endo M . CRISPR/Cas9-mediated targeted mutagenesis in grape. PLoS One, 2017,12(5):e0177966. |
[44] | Wang XH, Tu MX, Wang DJ, Liu JW, Li YJ, Li Z, Wang YJ, Wang XP . CRISPR/Cas9-mediated efficient targeted mutagenesis in grape in the first generation. Plant Biotechnol J, 2018,16(4):844-855. |
[45] | Ren C, Guo YC, Kong JH, Lecourieux F, Dai ZW, Li SH, Liang ZC . Knockout of VvCCD8 gene in grapevine affects shoot branching. BMC Plant Biol, 2020,20(1):47. |
[46] | Malnoy M, Viola R, Jung MH, Koo OJ, Kim S, Kim JS, Velasco R, Nagamangala Kanchiswamy C . DNA-free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins. Front Plant Sci, 2016,7:1904. |
[47] | Nishitani C, Hirai N, Komori S, Wada M, Okada K, Osakabe K, Yamamoto T, Osakabe Y . Efficient genome editing in apple using a CRISPR/Cas9 system. Sci Rep, 2016,6:31481. |
[48] | Charrier A, Vergne E, Dousset N, Richer A, Petiteau A, Chevreau E . Efficient targeted mutagenesis in apple and first time edition of pear using the CRISPR-Cas9 system. Front Plant Sci, 2019,10:40. |
[49] | Chang LJ, Wu S, Tian L . Effective genome editing and identification of a regiospecific gallic acid 4-O-glycosyltransferase in pomegranate ( Punica granatum L.). Hortic Res, 2019,6:123. |
[50] | Breitler JC, Dechamp E, Campa C, Rodrigues LAZ, Guyot R, Marraccini P, Etienne H . CRISPR/Cas9-mediated efficient targeted mutagenesis has the potential to accelerate the domestication of Coffea canephora. Plant Cell Tiss Org, 2018,134(3):383-394. |
[51] | Fister AS, Landherr L, Maximova SN, Guiltinan MJ . Transient expression of CRISPR/Cas9 machinery targeting TcNPR3 enhances defense response in Theobroma cacao. Front Plant Sci, 2018,9:268. |
[52] | Shi Z, Zhang YF, Maximova SN, Guiltinan MJ . TcNPR3 from Theobroma cacao functions as a repressor of the pathogen defense response. BMC Plant Biol, 2013,13(1):204. |
[53] | Odipio J, Alicai T, Ingelbrecht I, Nusinow DA, Bart R, Taylor NJ . Efficient CRISPR/Cas9 genome editing of phytoene desaturase in cassava. Front Plant Sci, 2017,8:1780. |
[54] | Gomez MA, Lin ZD, Moll T, Chauhan RD, Hayden L, Renninger K, Beyene G, Taylor NJ, Carrington JC, Staskawicz BJ, Bart RS . Simultaneous CRISPR/Cas9- mediated editing of cassava eIF4E isoforms nCBP-1 and nCBP-2 reduces cassava brown streak disease symptom severity and incidence. Plant Biotechnol J, 2019,17(2):421-434. |
[55] | Mehta D, Stürchler A, Anjanappa RB, Zaidi SS, Hirsch- Hoffmann M, Gruissem W, Vanderschuren H . Linking CRISPR-Cas9 interference in cassava to the evolution of editing-resistant geminiviruses. Genome Biol, 2019,20(1):80. |
[56] | Rybicki EP . CRISPR-Cas9 strikes out in cassava. Nat Biotechnol, 2019,37(7):727-728. |
[57] | Fan YT, Xin SC, Dai XM, Yang XF, Huang HS, Hua YW . Efficient genome editing of rubber tree ( hevea brasiliensis) protoplasts using CRISPR/Cas9 ribonucleoproteins. Ind Crop Prod, 2020,146:112146. |
[58] | Wu ZP, Wu GJ . Research progress of energy plant Jatropha curcas L. Chin Bull Life Sci, 2014,26(5):497-502. |
吴平治, 吴国江 . 木本油料植物麻疯树的研究进展. 生命科学, 2014,26(5):497-502. | |
[59] | Pan BZ, Xu ZF . Benzyladenine treatment significantly increases the seed yield of the biofuel plant jatropha curcas. Plant Growth Regul, 2011,30(2):166-174. |
[60] | Cai L, Zhang L, Fu QT, Xu ZF . Identification and expression analysis of cytokinin metabolic genes IPTs, CYP735A and CKXs in the biofuel plant Jatropha curcas. Peer J, 2018,6:e4812. |
[61] | van Zeijl A, Wardhani TAK, Seifi Kalhor M, Rutten L, Bu F, Hartog M, Linders S, Fedorova EE, Bisseling T, Kohlen W, Geurts R . CRISPR/Cas9-mediated mutagenesis of four putative symbiosis genes of the tropical tree Parasponia andersonii reveals novel phenotypes. Front Plant Sci, 2018,9:284. |
[62] | Lin CS, Hsu CT, Yang LH, Lee LY, Fu JY, Cheng QW, Wu FH, Hsiao HC, Zhang YS, Zhang R, Chang WJ, Yu CT, Wang W, Liao LJ, Gelvin SB, Shih MC . Application of protoplast technology to CRISPR/Cas9 mutagenesis: from single‐cell mutation detection to mutant plant regeneration. Plant Biotechnol J, 2018,16(7):1295-1310. |
[63] | Ye SW, Chen G, Kohnen MV, Wang WJ, Cai CY, Ding WS, Wu C, Gu LF, Zheng YS, Ma XQ, Lin CT, Zhu Q . Robust CRISPR/Cas9 mediated genome editing and its application in manipulating plant height in the first generation of hexaploid Ma bamboo ( Dendrocalamus latiflorus Munro). Plant Biotechnol J, 2020, doi: 10.1111/pbi.13320. |
[64] | Xie SS, Zhang Y, Zhang LS, Li GL, Zhao CZ, Ni P, Zhao SH, . sgRNA design for the CRISPR/Cas9 system and evaluation of its off-target effects. Hereditas(Beijing), 2015,37(11):1125-1136. |
谢胜松, 张懿, 张利生, 李广磊, 赵长志, 倪攀, 赵书红 . CRISPR/Cas9系统中sgRNA设计与脱靶效应评估. 遗传, 2015,37(11):1125-1136. | |
[65] | Meng XB, Yu H, Zhang Y, Zhuang FF, Song XG, Gao SS, Gao CX, Li JY . Construction of a genome-wide mutant library in rice using CRISPR/Cas9. Mol Plant, 2017,10(9):1238-1241. |
[66] | Shan QW, Gao CX . Research progress of genome editing and derivative technologies in plants. Hereditas(Beijing), 2015,37(10):953-973. |
单奇伟, 高彩霞 . 植物基因组编辑及衍生技术最新研究进展. 遗传, 2015,37(10):953-973. | |
[67] | Zong Y, Gao CX . Progress on base editing systems. Hereditas (Beijing), 2019,41(9):777-800. |
宗媛, 高彩霞 . 碱基编辑系统研究进展. 遗传, 2019,41(9):777-800. |
[1] | 卞中, 曹东平, 庄文姝, 张舒玮, 刘巧泉, 张林. 水稻分子设计育种启示:传统与现代相结合[J]. 遗传, 2023, 45(9): 718-740. |
[2] | 王秉政, 张超, 张佳丽, 孙锦. 利用单转录本表达Cas9和sgRNA条件性编辑果蝇基因组[J]. 遗传, 2023, 45(7): 593-601. |
[3] | 吴仲胜, 高誉, 杜勇涛, 党颂, 何康敏. CRISPR-Cas9基因编辑技术对细胞内源蛋白进行荧光标记的实验操作[J]. 遗传, 2023, 45(2): 165-175. |
[4] | 刘梅珍, 王立人, 李咏梅, 马雪云, 韩红辉, 李大力. 利用CRISPR/Cas9技术构建基因编辑大鼠模型[J]. 遗传, 2023, 45(1): 78-87. |
[5] | 姜明亮, 郎红, 李晓楠, 祖野, 赵靖, 彭沈凌, 刘振, 战宗祥, 朴钟云. 植物孤基因研究进展[J]. 遗传, 2022, 44(8): 682-694. |
[6] | 张潇筠, 徐坤, 沈俊岑, 穆璐, 钱泓润, 崔婕妤, 马宝霞, 陈知龙, 张智英, 魏泽辉. 一种新型提高HDR效率的CRISPR/Cas9-Gal4BD供体适配基因编辑系统[J]. 遗传, 2022, 44(8): 708-719. |
[7] | 张充, 魏子璇, 王敏, 陈瑶生, 何祖勇. 利用CRISPR/Cas9在人类黑色素瘤细胞中编辑MC1R与功能分析[J]. 遗传, 2022, 44(7): 581-590. |
[8] | 刘尧, 周先辉, 黄舒泓, 王小龙. 引导编辑:突破碱基编辑类型的新技术[J]. 遗传, 2022, 44(11): 993-1008. |
[9] | 韩玉婷, 许博文, 李羽童, 卢心怡, 董习之, 邱雨浩, 车沁耘, 朱芮葆, 郑丽, 李孝宸, 司绪, 倪建泉. 模式动物果蝇的基因调控前沿技术[J]. 遗传, 2022, 44(1): 3-14. |
[10] | 王海涛, 李亭亭, 黄勋, 马润林, 刘秋月. 遗传修饰技术在绵羊分子设计育种中的应用[J]. 遗传, 2021, 43(6): 580-600. |
[11] | 杨光武, 田嫄. 果蝇F-box基因Ppa促进脂肪储存[J]. 遗传, 2021, 43(6): 615-622. |
[12] | 彭定威, 李瑞强, 曾武, 王敏, 石翾, 曾检华, 刘小红, 陈瑶生, 何祖勇. 编辑MSTN半胱氨酸节基元促进两广小花猪肌肉生长[J]. 遗传, 2021, 43(3): 261-270. |
[13] | 王娜, 甲芝莲, 吴强. RFX5调控原钙粘蛋白α基因簇的表达[J]. 遗传, 2020, 42(8): 760-774. |
[14] | 李国玲, 杨善欣, 吴珍芳, 张献伟. 提高CRISPR/Cas9介导的动物基因组精确插入效率 研究进展[J]. 遗传, 2020, 42(7): 641-656. |
[15] | 李霞, 施皖, 耿立召, 许建平. CRISPR/Cas核糖核蛋白介导的植物基因组编辑[J]. 遗传, 2020, 42(6): 556-564. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: