遗传 ›› 2021, Vol. 43 ›› Issue (12): 1142-1148.doi: 10.16288/j.yczz.21-319
收稿日期:
2021-09-06
修回日期:
2021-10-23
出版日期:
2021-12-20
发布日期:
2021-11-24
通讯作者:
聂辉
E-mail:niehui@sdnu.edu.cn
基金资助:
Hui Nie(), Yiwen Zhang, Jianing Li, Nannan Wang, Lan Xu
Received:
2021-09-06
Revised:
2021-10-23
Online:
2021-12-20
Published:
2021-11-24
Contact:
Nie Hui
E-mail:niehui@sdnu.edu.cn
Supported by:
摘要:
减数分裂是由二倍体的生殖细胞产生单倍体的配子的过程,是有性生殖的核心。联会复合体是同源染色体之间形成的超分子结构,具有稳定同源染色体配对、促进遗传交叉形成等功能。越来越多的研究表明联会复合体异常是造成人类不孕不育的重要原因之一。本文主要综述了联会复合体中央区域异常(如SYCE1/2/3、TEX12、SIX6OS1、SYCP1突变)及侧向元件缺陷(如SYCP2、SYCP3突变)与不孕不育的相关性研究,以期为深入理解减数分裂错误导致生殖健康问题的病理机制提供理论参考。
聂辉, 张译文, 李佳宁, 王楠楠, 徐澜. 减数分裂联会复合体异常与不孕不育相关性研究进展[J]. 遗传, 2021, 43(12): 1142-1148.
Hui Nie, Yiwen Zhang, Jianing Li, Nannan Wang, Lan Xu. Progress on the correlation between the abnormal synaptonemal complex and infertility[J]. Hereditas(Beijing), 2021, 43(12): 1142-1148.
表1
SC组分缺陷与不孕不育的相关性"
名称 | SC位置 | 突变致小鼠表型 | 突变致人类疾病 | 参考文献 |
---|---|---|---|---|
SYCE1 | CR | 雄性、雌性均不育 | NOA、POI | [ |
SYCE2 | CR | 雄性、雌性均不育 | / | [ |
SYCE3 | CR | 雄性、雌性均不育 | / | [ |
TEX12 | CR | 雄性、雌性均不育 | NOA | [ |
SIX6OS1 | CR | 雄性、雌性均不育 | NOA、POI | [ |
SYCP1 | CR | 雄性、雌性均不育 | / | [ |
SYCP2 | LE | 雄性不育,雌性生殖力降低 | 男性不育 | [ |
SYCP3 | LE | 雄性不育,雌性生殖力降低 | NOA、RPL (存在争议) | [ |
[1] | Szamatowicz M, Szamatowicz J. Proven and unproven methods for diagnosis and treatment of infertility. Adv Med Sci, 2020,65(1):93-96. |
[2] | Gheldof A, Mackay DJG, Cheong Y, Verpoest W. Genetic diagnosis of subfertility: the impact of meiosis and maternal effects. J Med Genet, 2019,56(5):271-282. |
[3] | Bala R, Singh V, Rajender S, Singh K. Environment, lifestyle, and female infertility. Reprod Sci, 2021,28(3):617-638. |
[4] | Kulkarni DS, Owens SN, Honda M, Ito M, Yang Y, Corrigan M W, Chen L, Quan A L, Hunter N. PCNA activates the MutLγ endonuclease to promote meiotic crossing over. Nature, 2020,586(7830):623-627. |
[5] | Biswas L, Tyc K, El Yakoubi W, Morgan K, Xing JC, Schindler K. Meiosis interrupted: the genetics of female infertility via meiotic failure. Reproduction, 2021,161(2):R13-r35. |
[6] | Xie WJ, Shi DY, Cai ZX, Chen XY, Jin WW. Organization, function and genetic controlling of synaptonemal complex. Hereditas(Beijing), 2012,34(2):167-176. |
谢文军, 史典义, 蔡泽熙, 陈晓阳, 金危危. 联会复合体的组成、功能及遗传控制. 遗传, 2012,34(2):167-176. | |
[7] | Rog O, Köhler S, Dernburg AF. The synaptonemal complex has liquid crystalline properties and spatially regulates meiotic recombination factors. eLife, 2017,6:e21455. |
[8] | Bolcun-Filas E, Handel M A. Meiosis: the chromosomal foundation of reproduction. Biol Reprod, 2018,99(1):112-126. |
[9] | Láscarez-Lagunas L, Martinez-Garcia M, Colaiácovo M. SnapShot: meiosis-prophase I. Cell, 2020, 181(6): 1442-1442.e1. |
[10] | Handel MA, Schimenti JC. Genetics of mammalian meiosis: regulation, dynamics and impact on fertility. Nat Rev Genet, 2010,11(2):124-136. |
[11] | Tyc KM, Mccoy RC, Schindler K, Xing JC. Mathematical modeling of human oocyte aneuploidy. Proc Natl Acad Sci USA, 2020,117(19):10455-10464. |
[12] | Gao JM, Colaiácovo MP. Zipping and unzipping: protein modifications regulating synaptonemal complex dynamics. Trends Genet, 2018,34(3):232-245. |
[13] | Fraune J, Brochier-Armanet C, Alsheimer M, Volff JN, Schücker K, Benavente R. Evolutionary history of the mammalian synaptonemal complex. Chromosoma, 2016,125(3):355-360. |
[14] | Zwettler FU, Spindler MC, Reinhard S, Klein T, Kurz A, Benavente R, Sauer M. Tracking down the molecular architecture of the synaptonemal complex by expansion microscopy. Nat Commun, 2020,11(1):3222. |
[15] | Hurlock M E, Čavka I, Kursel LE, Haversat J, Wooten M, Nizami Z, Turniansky R, Hoess P, Ries J, Gall JG, Rog O, Köhler S, Kim Y. Identification of novel synaptonemal complex components in C. elegans. J Cell Biol, 2020,219(5):e201910043. |
[16] | Zhang ZG, Xie SB, Wang RX, Guo SQ, Zhao QC, Nie H, Liu YY, Zhang FG, Chen M, Liu LB, Meng XQ, Liu M, Zhao L, Colaiácovo MP, Zhou J, Gao JM. Multivalent weak interactions between assembly units drive synaptonemal complex formation. J Cell Biol, 2020,219(5):e201910086. |
[17] | Geisinger A, Benavente R. Mutations in genes coding for synaptonemal complex proteins and their impact on human fertility. Cytogenet Genome Res, 2016,150(2):77-85. |
[18] | Bolcun-Filas E, Hall E, Speed R, Taggart M, Grey C, De Massy B, Benavente R, Cooke HJ. Mutation of the mouse Syce1 gene disrupts synapsis and suggests a link between synaptonemal complex structural components and DNA repair. PLoS Genet, 2009,5(2):e1000393. |
[19] | Maor-Sagie E, Cinnamon Y, Yaacov B, Shaag A, Goldsmidt H, Zenvirt S, Laufer N, Richler C, Frumkin A. Deleterious mutation in SYCE1 is associated with non-obstructive azoospermia. J Assist Reprod Genet, 2015,32(6):887-891. |
[20] | Pashaei M, Rahimi Bidgoli MM, Zare-Abdollahi D, Najmabadi H, Haji-Seyed-Javadi R, Fatehi F, Alavi A. The second mutation of SYCE1 gene associated with autosomal recessive nonobstructive azoospermia. J Assist Reprod Genet, 2020,37(2):451-458. |
[21] | De Vries L, Behar DM, Smirin-Yosef P, Lagovsky I, Tzur S, Basel-Vanagaite L. Exome sequencing reveals SYCE1 mutation associated with autosomal recessive primary ovarian insufficiency. J Clin Endocrinol Metab, 2014,99(10):E2129-2132. |
[22] | Zhe J, Ye DS, Chen X, Liu YD, Zhou XY, Li Y, Zhang J, Chen SL. Consanguineous Chinese familial study reveals that a gross deletion that includes the SYCE1 gene region is associated with premature ovarian insufficiency. Reprod Sci, 2020,27(2):461-467. |
[23] | Sánchez-Sáez F, Gómez-H L, Dunne OM, Gallego-Páramo C, Felipe-Medina N, Sánchez-Martín M, Llano E, Pendas A M, Davies O R. Meiotic chromosome synapsis depends on multivalent SYCE1-SIX6OS1 interactions that are disrupted in cases of human infertility. Sci Adv, 2020, 6(36): eabb1660. |
[24] | Costa Y, Speed R, Ollinger R, Alsheimer M, Semple C A, Gautier P, Maratou K, Novak I, Höög C, Benavente R, Cooke H J. Two novel proteins recruited by synaptonemal complex protein 1 (SYCP1) are at the centre of meiosis. J Cell Sci, 2005,118(Pt 12):2755-2762. |
[25] | Bolcun-Filas E, Costa Y, Speed R, Taggart M, Benavente R, De Rooij DG, Cooke HJ. SYCE2 is required for synaptonemal complex assembly, double strand break repair, and homologous recombination. J Cell Biol, 2007,176(6):741-747. |
[26] | Schramm S, Fraune J, Naumann R, Hernandez-Hernandez A, Höög C, Cooke HJ, Alsheimer M, Benavente R. A novel mouse synaptonemal complex protein is essential for loading of central element proteins, recombination, and fertility. PLoS Genet, 2011,7(5):e1002088. |
[27] | Hamer G, Wang H, Bolcun-Filas E, Cooke H J, Benavente R, Höög C. Progression of meiotic recombination requires structural maturation of the central element of the synaptonemal complex. J Cell Sci, 2008,121(Pt 15):2445-2451. |
[28] | Boroujeni P B, Sabbaghian M, Totonchi M, Sodeifi N, Sarkardeh H, Samadian A, Sadighi-Gilani MA, Gourabi H. Expression analysis of genes encoding TEX11, TEX12, TEX14 and TEX15 in testis tissues of men with non-obstructive azoospermia. JBRA Assist Reprod, 2018,22(3):185-192. |
[29] | Gómez-H L, Felipe-Medina N, Sánchez-Martín M, Davies OR, Ramos I, García-Tuñón I, De Rooij DG, Dereli I, Tóth A, Barbero JL, Benavente R, Llano E, Pendas AM. C14ORF39/SIX6OS1 is a constituent of the synaptonemal complex and is essential for mouse fertility. Nat Commun, 2016,7:13298. |
[30] | Fan SX, Jiao YY, Khan R, Jiang XH, Javed AR, Ali A, Zhang H, Zhou JT, Naeem M, Murtaza G, Li Y, Yang G, Zaman Q, Zubair M, Guan HY, Zhang XX, Ma H, Jiang HW, Ali H, Dil S, Shah W, Ahmad N, Zhang YW, Shi QH. Homozygous mutations in C14orf39/SIX6OS1 cause non-obstructive azoospermia and premature ovarian insufficiency in humans. Am J Hum Genet, 2021,108(2):324-336. |
[31] | Dunce JM, Dunne OM, Ratcliff M, Millán C, Madgwick S, Usón I, Davies OR. Structural basis of meiotic chromosome synapsis through SYCP1 self-assembly. Nat Struct Mol Biol, 2018,25(7):557-569. |
[32] | De Vries FAT, De Boer E, Van Den Bosch M, Baarends WM, Ooms M, Yuan L, Liu JG, Van Zeeland AA, Heyting C, Pastink A. Mouse Sycp1 functions in synaptonemal complex assembly, meiotic recombination, and XY body formation. Genes Dev, 2005,19(11):1376-1389. |
[33] | Yang F, De La Fuente R, Leu NA, Baumann C, Mclaughlin K J, Wang P J. Mouse SYCP2 is required for synaptonemal complex assembly and chromosomal synapsis during male meiosis. J Cell Biol, 2006,173(4):497-507. |
[34] | Yuan L, Liu JG, Zhao J, Brundell E, Daneholt B, Höög C. The murine SCP3 gene is required for synaptonemal complex assembly, chromosome synapsis, and male fertility. Mol Cell, 2000,5(1):73-83. |
[35] | Wang H, Höög C. Structural damage to meiotic chromosomes impairs DNA recombination and checkpoint control in mammalian oocytes. J Cell Biol, 2006,173(4):485-495. |
[36] | Roeder GS, Bailis JM. The pachytene checkpoint. Trends Genet, 2000,16(9):395-403. |
[37] | Schilit SLP, Menon S, Friedrich C, Kammin T, Wilch E, Hanscom C, Jiang SZ, Kliesch S, Talkowski ME, Tüttelmann F, Macqueen AJ, Morton CC. SYCP2 Translocation-Mediated Dysregulation and Frameshift Variants Cause Human Male Infertility. Am J Hum Genet, 2020,106(1):41-57. |
[38] | Miyamoto T, Hasuike S, Yogev L, Maduro MR, Ishikawa M, Westphal H, Lamb DJ. Azoospermia in patients heterozygous for a mutation in SYCP3. Lancet, 2003,362(9397):1714-1719. |
[39] | Bolor H, Mori T, Nishiyama S, Ito Y, Hosoba E, Inagaki H, Kogo H, Ohye T, Tsutsumi M, Kato T, Tong MQ, Nishizawa H, Pryor-Koishi K, Kitaoka E, Sawada T, Nishiyama Y, Udagawa Y, Kurahashi H. Mutations of the SYCP3 gene in women with recurrent pregnancy loss. Am J Hum Genet, 2009,84(1):14-20. |
[40] | Sazegari A, Kalantar SM, Pashaiefar H, Mohtaram S, Honarvar N, Feizollahi Z, Ghasemi N. The T657C polymorphism on the SYCP3 gene is associated with recurrent pregnancy loss. J Assist Reprod Genet, 2014,31(10):1377-1381. |
[41] | Mizutani E, Suzumori N, Ozaki Y, Oseto K, Yamada-Namikawa C, Nakanishi M, Sugiura-Ogasawara M. SYCP3 mutation may not be associated with recurrent miscarriage caused by aneuploidy. Hum Reprod, 2011,26(5):1259-1266. |
[42] | Liu HB, Huang T, Li MJ, Li M, Zhang CX, Jiang J, Yu XC, Yin YY, Zhang F, Lu G, Luo MC, Zhang LR, Li JS, Liu K, Chen ZJ. SCRE serves as a unique synaptonemal complex fastener and is essential for progression of meiosis prophase I in mice. Nucleic Acids Res, 2019,47(11):5670-5683. |
[1] | 吕香江, 郭静, 林戈. TRIP13基因新突变导致卵母细胞成熟阻滞为特征的女性不孕[J]. 遗传, 2023, 45(6): 514-525. |
[2] | 郭雨萱, 严顺平, 王应祥. 重组酶RAD51和DMC1功能保守和分化研究进展[J]. 遗传, 2022, 44(5): 398-413. |
[3] | 李园园, 郭磊, 韩之明. NEK家族在细胞周期调控中的作用[J]. 遗传, 2021, 43(7): 642-653. |
[4] | 李帆, 余蓉培, 孙丹, 王继华, 李绅崇, 阮继伟, 单芹丽, 陆平利, 汪国鲜. 抑制植物减数分裂重组的分子机理[J]. 遗传, 2019, 41(1): 52-65. |
[5] | 廖亚平,王春景,梁猛,胡小梅,吴琦. 平衡复杂染色体重排携带者的遗传与生育情况分析[J]. 遗传, 2017, 39(5): 396-412. |
[6] | 岳珊珊,夏来新. 酵母双杂交筛选与果蝇C(2)M相互作用的蛋白[J]. 遗传, 2015, 37(11): 1160-1166. |
[7] | 张宝乐 高殿帅 徐银学. G蛋白偶联受体3:调控神经系统和卵泡发育的关键因子[J]. 遗传, 2013, 35(5): 578-586. |
[8] | 谢文军,史典义,蔡泽熙,陈晓阳,金危危. 联会复合体的组成、功能及遗传控制[J]. 遗传, 2012, 34(2): 167-176. |
[9] | 刘梦豪,赵凯强,王雅栋,杨梦平,赵宁宁,杨大祥. 蝗虫精母细胞减数分裂各时期的识别[J]. 遗传, 2012, 34(12): 1628-1637. |
[10] | 段涛,杨庆岭,王刘,史庆华,于德新. 人精母细胞重组频率和年龄相关性的分析[J]. 遗传, 2011, 33(7): 725-730. |
[11] | 陈军,罗伟雄,李明,罗琼. 水稻减数分裂过程中染色体重组交换行为[J]. 遗传, 2011, 33(6): 648-653. |
[12] | 孟雅楠,孟丽军,宋亚娟,刘美玲,张秀军. 小RNA分子与精子发生调控[J]. 遗传, 2011, 33(1): 9-16. |
[13] | 刘春霞,何群燕,金危危. 植物减数分裂中的染色体配对、联会和重组研究进展[J]. 遗传, 2010, 32(12): 1223-1231. |
[14] | 汪斌,刘志宇,苗龙. 秀丽线虫精子发生和精子受精的研究进展[J]. 遗传, 2008, 30(6): 677-686. |
[15] | 胡龙兴,王兆龙. 植物无融合生殖相关基因研究进展[J]. 遗传, 2008, 30(2): 155-163. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: