遗传 ›› 2022, Vol. 44 ›› Issue (9): 733-744.doi: 10.16288/j.yczz.22-126
收稿日期:
2022-04-26
修回日期:
2022-06-28
出版日期:
2022-09-20
发布日期:
2022-07-27
通讯作者:
李瑾,汪虎
E-mail:lijiali_carry@163.com;lijin@hznu.edu.cn;20120066@hznu.edu.cn
作者简介:
黎嘉丽,在读硕士研究生,专业方向:细胞生物学。E-mail: 基金资助:
Jiali Li(), Jin Li(), Hu Wang()
Received:
2022-04-26
Revised:
2022-06-28
Online:
2022-09-20
Published:
2022-07-27
Contact:
Li Jin,Wang Hu
E-mail:lijiali_carry@163.com;lijin@hznu.edu.cn;20120066@hznu.edu.cn
Supported by:
摘要:
健康细胞利用一系列蛋白质质量调控网络来维持自身蛋白质组的稳定性和功能性,即维持蛋白稳态。但是在衰老过程中普遍出现蛋白稳态失衡的现象,其主要表现是蛋白质合成、折叠和降解之间的平衡被破坏。造成衰老相关蛋白稳态失衡的原因主要有:(1)应激反应相关途径的转录受到抑制;(2)蛋白酶体活性降低和自噬功能出现障碍;(3)核糖体翻译暂停。另外,在衰老过程中细胞主要通过蛋白稳态网络的分子伴侣、蛋白酶体、自噬系统等对蛋白稳态进行调节。本文对衰老过程中造成蛋白稳态失衡的诱因以及蛋白稳态调控的途径进行综述,以期为衰老研究和解决老年健康问题开拓新思路。
黎嘉丽, 李瑾, 汪虎. 衰老相关的蛋白稳态失衡[J]. 遗传, 2022, 44(9): 733-744.
Jiali Li, Jin Li, Hu Wang. Age-associated proteostasis collapse[J]. Hereditas(Beijing), 2022, 44(9): 733-744.
[1] | Yuan J, Cai SQ . The regulatory mechanisms of behavioral and cognitive aging. Hereditas (Beijing), 2021,43(6):545-570. |
袁洁, 蔡时青 . 衰老过程中行为和认知功能退化的调控机制研究. 遗传, 2021,43(6):545-570. | |
[2] | López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G . The hallmarks of aging. Cell, 2013,153(6):1194-1217. |
[3] | Kirkwood TBL . Understanding the odd science of aging. Cell, 2005,120(4):437-447. |
[4] | Haynes C M, Ron D . The mitochondrial UPR - protecting organelle protein homeostasis. J Cell Sci, 2010,123(Pt 22):3849-3855. |
[5] | Zheng TL, Zhang WY, Chun L, Liu JF . Mitochondrial unfolded protein response and ageing in C. elegans. Prog Biochem Biophys, 2022,49(5):897-906. |
郑天琳, 张文渊, 春雷, 刘剑峰 . 线粒体未折叠蛋白反应调控线虫衰老研究进展. 生物化学与生物物理进展, 2022,49(5):897-906. | |
[6] | Balch WE, Morimoto RI, Dillin A, Kelly JW . Adapting proteostasis for disease intervention. Science, 2008,319(5865):916-919. |
[7] | Rinaldi C, Mäger I, Wood MJ . Proteostasis and diseases of the motor unit. Front Mol Neurosci, 2016,9:164. |
[8] | Labbadia J, Morimoto RI . The biology of proteostasis in aging and disease. Annu Rev Biochem, 2015,84:435-464. |
[9] | Powers ET, Morimoto RI, Dillin A, Kelly JW, Balch WE . Biological and chemical approaches to diseases of proteostasis deficiency. Annu Rev Biochem, 2009,78:959-991. |
[10] | Kaushik S, Cuervo AM . Proteostasis and aging. Nat Med, 2015,21(12):1406-1415. |
[11] | Campisi J, d'Adda di Fagagna F . Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol, 2007,8(9):729-740. |
[12] | Balchin D, Hayer-Hartl M, Hartl FU. In vivo aspects of protein folding and quality control. Science, 2016, 353(6294): aac4354. |
[13] | Hipp MS, Kasturi P, Hartl FU . The proteostasis network and its decline in ageing. Nat Rev Mol Cell Biol, 2019,20(7):421-435. |
[14] | Taylor RC, Dillin A . Aging as an event of proteostasis collapse. Cold Spring Harb Perspect Biol, 2011,3(5):a004440. |
[15] | Ben-Zvi A, Miller EA, Morimoto RI . Collapse of proteostasis represents an early molecular event in Caenorhabditis elegans aging. Proc Natl Acad Sci USA, 2009,106(35):14914-14919. |
[16] | Heydari AR, Wu B, Takahashi R, Strong R, Richardson A . Expression of heat shock protein 70 is altered by age and diet at the level of transcription. Mol Cell Biol, 1993,13(5):2909-2918. |
[17] | Morimoto RI, Cuervo AM . Proteostasis and the aging proteome in health and disease. J Gerontol A Biol Sci Med Sci, 2014, 69 Suppl 1(Suppl 1): S33-S38. |
[18] | Meller A, Shalgi R . The aging proteostasis decline: from nematode to human. Exp Cell Res, 2021,399(2):112474. |
[19] | Haigis MC, Yankner BA . The aging stress response. Mol Cell, 2010,40(2):333-344. |
[20] | Tian WG, Wang CF, Chen JP, Liu Y, Gai XH, Ren T, Tian CW . Research progress on anti-Alzheimer’s disease and mechanism of traditional Chinese medicine. Chin Tradit Herb Drugs, 2022,53(10):3195-3208. |
田文国, 王春芳, 陈金鹏, 刘毅, 盖晓红, 任涛, 田成旺 . 中药抗阿尔茨海默病的作用及其机制研究进展. 中草药, 2022,53(10):3195-3208. | |
[21] | Cohen E, Bieschke J, Perciavalle RM, Kelly JW, Dillin A . Opposing activities protect against age-onset proteotoxicity. Science, 2006,313(5793):1604-1610. |
[22] | Hsu AL, Murphy CT, Kenyon C . Regulation of aging and age-related disease by DAF-16 and heat-shock factor. Science, 2003,300(5622):1142-1145. |
[23] | Morley JF, Brignull HR, Weyers JJ, Morimoto RI . The threshold for polyglutamine-expansion protein aggregation and cellular toxicity is dynamic and influenced by aging in Caenorhabditis elegans. Proc Natl Acad Sci USA, 2002,99(16):10417-10422. |
[24] | Kenyon C . The plasticity of aging: insights from long-lived mutants. Cell, 2005,120(4):449-460. |
[25] | Xiong WD, Xu KY, Lu L, Li JL . Research progress on lncRNAs in Alzheimer’s disease. Hereditas (Beijing), 2022,44(3):189-197. |
熊婉迪, 徐开宇, 陆林, 李家立 . 长链非编码RNA在阿尔茨海默病中的研究进展. 遗传, 2022,44(3):189-197. | |
[26] | Costa-Mattioli M, Walter P. . The integrated stress response: from mechanism to disease. Science, 2020, 368(6489): eaat5314. |
[27] | Walter P, Ron D . The unfolded protein response: from stress pathway to homeostatic regulation. Science, 2011,334(6059):1081-1086. |
[28] | Sabath N, Levy-Adam F, Younis A, Rozales K, Meller A, Hadar S, Soueid-Baumgarten S, Shalgi R . Cellular proteostasis decline in human senescence. Proc Natl Acad Sci USA, 2020,117(50):31902-31913. |
[29] | Jiang Q, Chen XD . Biological function of heat shock protein 70. Strait Pharmaceutical Journal, 2019,31(9):5-10. |
江琼, 陈晓东 . 热休克蛋白70的生物学功能. 海峡药学, 2019,31(9):5-10. | |
[30] | Westerheide SD, Anckar J, Stevens SM, Jr., Sistonen L, Morimoto RI. Stress-inducible regulation of heat shock factor 1 by the deacetylase SIRT1. Science, 2009,323(5917):1063-1066. |
[31] | Zelin E, Freeman BC . Lysine deacetylases regulate the heat shock response including the age-associated impairment of HSF1. J Mol Biol, 2015,427(7):1644-1654. |
[32] | Hall DM, Xu L, Drake VJ, Oberley LW, Oberley TD, Moseley PL, Kregel KC . Aging reduces adaptive capacity and stress protein expression in the liver after heat stress. J Appl Physiol (1985), 2000,89(2):749-759. |
[33] | Liu AY, Lin Z, Choi HS, Sorhage F, Li B . Attenuated induction of heat shock gene expression in aging diploid fibroblasts. The J Biol Chem, 1989,264(20):12037-12045. |
[34] | Locke M, Tanguay RM . Diminished heat shock response in the aged myocardium. Cell Stress Chaperones, 1996,1(4):251-260. |
[35] | Brehme M, Voisine C, Rolland T, Wachi S, Soper JH, Zhu YT, Orton K, Villella A, Garza D, Vidal M, Ge H, Morimoto RI . A chaperome subnetwork safeguards proteostasis in aging and neurodegenerative disease. Cell Rep, 2014,9(3):1135-1150. |
[36] | Akerfelt M, Morimoto RI, Sistonen L . Heat shock factors: integrators of cell stress, development and lifespan. Nat Rev Mol Cell Biol, 2010,11(8):545-555. |
[37] | Shemesh N, Shai N, Ben-Zvi A . Germline stem cell arrest inhibits the collapse of somatic proteostasis early in Caenorhabditis elegans adulthood. Aging Cell, 2013,12(5):814-822. |
[38] | Labbadia J, Morimoto RI . Repression of the heat shock response is a programmed event at the onset of reproduction. Mol Cell, 2015,59(4):639-650. |
[39] | Merkwirth C, Jovaisaite V, Durieux J, Matilainen O, Jordan SD, Quiros PM, Steffen KK, Williams EG, Mouchiroud L, Tronnes SU, Murillo V, Wolff SC, Shaw RJ, Auwerx J, Dillin A . Two conserved histone demethylases regulate mitochondrial stress-induced longevity. Cell, 2016,165(5):1209-1223. |
[40] | Wood JG, Hillenmeyer S, Lawrence C, Chang CY, Hosier S, Lightfoot W, Mukherjee E, Jiang N, Schorl C, Brodsky AS, Neretti N, Helfand SL . Chromatin remodeling in the aging genome of Drosophila. Aging Cell, 2010,9(6):971-978. |
[41] | Baumgart M, Groth M, Priebe S, Savino A, Testa G, Dix A, Ripa R, Spallotta F, Gaetano C, Ori M, Terzibasi Tozzini E, Guthke R, Platzer M, Cellerino A . RNA-seq of the aging brain in the short-lived fish N. furzeri-conserved pathways and novel genes associated with neurogenesis. Aging Cell, 2014,13(6):965-974. |
[42] | Martins F, Sousa J, Pereira CD, da Cruz E S OAB, Rebelo S. Nuclear envelope dysfunction and its contribution to the aging process. Aging Cell, 2020,19(5):e13143. |
[43] | Shibata Y, Morimoto RI . How the nucleus copes with proteotoxic stress. Curr Biol, 2014,24(10):R463-R474. |
[44] | Zelin E, Zhang Y, Toogun OA, Zhong S, Freeman BC . The p23 molecular chaperone and GCN5 acetylase jointly modulate protein-DNA dynamics and open chromatin status. Mol Cell, 2012,48(3):459-470. |
[45] | Li Y, Liang JY, Wu GF, Yang N . Research progress on eukaryotic proteasome. Chin J Cell Biol, 2017,39(4):515-522. |
李媛, 梁俊玉, 武国凡, 杨宁 . 真核细胞蛋白酶体研究进展. 中国细胞生物学学报, 2017,39(4):515-522. | |
[46] | Prasad R, Kawaguchi S, Ng DTW . A nucleus-based quality control mechanism for cytosolic proteins. Mol Biol Cell, 2010,21(13):2117-2127. |
[47] | Heck J W, Cheung S K, Hampton R Y . Cytoplasmic protein quality control degradation mediated by parallel actions of the E3 ubiquitin ligases Ubr1 and San1. Proc Natl Acad Sci USA, 2010,107(3):1106-1111. |
[48] | Park SH, Kukushkin Y, Gupta R, Chen T, Konagai A, Hipp MS, Hayer-Hartl M, Hartl FU . PolyQ proteins interfere with nuclear degradation of cytosolic proteins by sequestering the Sis1p chaperone. Cell, 2013,154(1):134-145. |
[49] | Chondrogianni N, Stratford FLL, Trougakos IP, Friguet B, Rivett AJ, Gonos ES . Central role of the proteasome in senescence and survival of human fibroblasts: induction of a senescence-like phenotype upon its inhibition and resistance to stress upon its activation. J Biol Chem, 2003,278(30):28026-28037. |
[50] | Dong LH, Ran ML, Li Z, Peng FZ, Chen B . The role of ubiquitin-proteasome pathway in spermatogenesis. Hereditas (Beijing), 2016,38(9):791-800. |
董莲花, 冉茂良, 李智, 彭馥芝, 陈斌 . 泛素-蛋白酶体途径在精子生成中的作用. 遗传, 2016,38(9):791-800. | |
[51] | Sitte N, Merker K, Von Zglinicki T, Grune T, Davies K J . Protein oxidation and degradation during cellular senescence of human BJ fibroblasts: part I--effects of proliferative senescence. FASEB J, 2000,14(15):2495-2502. |
[52] | Sitte N , Protein oxidation and degradation during proliferative senescence of human MRC-5 fibroblasts. Free Radic Biol Med, 2000,28(5):701-708. |
[53] | Finley D . Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu Rev Biochem, 2009,78:477-513. |
[54] | Cuervo AM . Autophagy and aging: keeping that old broom working. Trends Genet, 2008,24(12):604-612. |
[55] | Jahn TR, Radford SE . Folding versus aggregation: polypeptide conformations on competing pathways. Arch Biochem Biophys, 2008,469(1):100-117. |
[56] | Ciryam P, Tartaglia GG, Morimoto RI, Dobson CM, Vendruscolo M . Widespread aggregation and neurodegenerative diseases are associated with supersaturated proteins. Cell Rep, 2013,5(3):781-790. |
[57] | Stein KC, Morales-Polanco F, van der Lienden J, Rainbolt TK, Frydman J. Ageing exacerbates ribosome pausing to disrupt cotranslational proteostasis. Nature, 2022,601(7894):637-642. |
[58] | Simms CL, Yan LL, Zaher HS. Ribosome collision is critical for quality control during No-Go Decay. Mol Cell, 2017, 68(2): 361- 373.e5. |
[59] | Juszkiewicz S, Chandrasekaran V, Lin Z, Kraatz S, Ramakrishnan V, Hegde RS. ZNF598 is a quality control sensor of collided ribosomes. Mol Cell, 2018, 72(3): 469-481.e7. |
[60] | Brandman O, Stewart-Ornstein J, Wong D, Larson A, Williams CC, Li GW, Zhou S, King D, Shen PS, Weibezahn J, Dunn JG, Rouskin S, Inada T, Frost A, Weissman JS . A ribosome-bound quality control complex triggers degradation of nascent peptides and signals translation stress. Cell, 2012,151(5):1042-1054. |
[61] | Sitron CS, Brandman O . Detection and degradation of stalled nascent chains via ribosome-associated quality control. Annu Rev Biochem, 2020,89:417-442. |
[62] | Choe YJ, Park SH, Hassemer T, Körner R, Vincenz- Donnelly L, Hayer-Hartl M, Hartl FU . Failure of RQC machinery causes protein aggregation and proteotoxic stress. Nature, 2016,531(7593):191-195. |
[63] | Klaips CL, Jayaraj GG, Hartl FU . Pathways of cellular proteostasis in aging and disease. J Cell Biol, 2018,217(1):51-63. |
[64] | Li J, Wang ZZ . Large molecules within cells in crowded environments. Prog Biochem Biophys, 2001, (06):788-792. |
李剑, 王志珍 . 细胞内的大分子拥挤环境. 生物化学与生物物理进展, 2001, ( 06):788-792. | |
[65] | Kim YE, Hipp MS, Bracher A, Hayer-Hartl M, Hartl FU . Molecular chaperone functions in protein folding and proteostasis. Annu Rev Biochem, 2013,82:323-355. |
[66] | Haslbeck M, Franzmann T, Weinfurtner D, Buchner J . Some like it hot: the structure and function of small heat-shock proteins. Nat Struct Mol Biol, 2005,12(10):842-846. |
[67] | Lee C, Kim H, Bardwell JCA . Electrostatic interactions are important for chaperone-client interaction in vivo. Microbiology (Reading), 2018,164(7):992-997. |
[68] | Hartl FU, Bracher A, Hayer-Hartl M . Molecular chaperones in protein folding and proteostasis. Nature, 2011,475(7356):324-332. |
[69] | Carra S, Alberti S, Arrigo PA, Benesch JL, Benjamin IJ, Boelens W, Bartelt-Kirbach B, Brundel BJJM, Buchner J, Bukau B, Carver JA, Ecroyd H, Emanuelsson C, Finet S, Golenhofen N, Goloubinoff P, Gusev N, Haslbeck M, Hightower LE, Kampinga HH, Klevit RE, Liberek K, McHaourab HS, McMenimen KA, Poletti A, Quinlan R, Strelkov SV, Toth ME, Vierling E, Tanguay RM. The growing world of small heat shock proteins: from structure to functions. Cell Stress Chaperones, 2017,22(4):601-611. |
[70] | Chen JN . Progress in molecular chaperones participating in regulations of plant and animal development and evolution. Hereditas (Beijing), 2010,32(5):443-447. |
陈建南 . 分子伴侣参与调控动、植物的发育和进化进程. 遗传, 2010,32(5):443-447. | |
[71] | Treweek TM, Meehan S, Ecroyd H, Carver JA . Small heat-shock proteins: important players in regulating cellular proteostasis. Cell Mol Life Sci, 2015,72(3):429-451. |
[72] | Albanèse V, Reissmann S, Frydman J . A ribosome- anchored chaperone network that facilitates eukaryotic ribosome biogenesis. J Cell Biol, 2010,189(1):69-81. |
[73] | Koga H, Kaushik S, Cuervo AM . Protein homeostasis and aging: the importance of exquisite quality control. Ageing Res Rev, 2011,10(2):205-215. |
[74] | Yang Z, Klionsky DJ . Mammalian autophagy: core molecular machinery and signaling regulation. Curr Opin Cell Biol, 2010,22(2):124-131. |
[75] | Rubinsztein DC, Mariño G, Kroemer G . Autophagy and aging. Cell, 2011,146(5):682-695. |
[76] | Ciechanover A . Intracellular protein degradation: from a vague idea thru the lysosome and the ubiquitin-proteasome system and onto human diseases and drug targeting. Best Pract Res Clin Haematol, 2017,30(4):341-355. |
[77] | Dikic I . Proteasomal and autophagic degradation systems. Annu Rev Biochem, 2017,86:193-224. |
[78] | Chen K, Cheng HH, Zhou RJ . Molecular mechanisms and functions of autophagy and the ubiq-uitin-proteasome pathway. Hereditas (Beijing), 2012,34(01):7-20. |
陈科, 程汉华, 周荣家 . 自噬与泛素化蛋白降解途径的分子机制及其功能. 遗传, 2012,34(01):7-20. | |
[79] | Arndt V, Rogon C, Höhfeld J . To be, or not to be--molecular chaperones in protein degradation. Cell Mol Life Sci, 2007,64(19-20):2525-2541. |
[80] | Tekirdag K, Cuervo AM . Chaperone-mediated autophagy and endosomal microautophagy: joint by a chaperone. J Biol Chem, 2018,293(15):5414-5424. |
[81] | Shiber A, Ravid T . Chaperoning proteins for destruction: diverse roles of Hsp70 chaperones and their co-chaperones in targeting misfolded proteins to the proteasome. Biomolecules, 2014,4(3):704-724. |
[82] | Jackson MP, Hewitt EW . Cellular proteostasis: degradation of misfolded proteins by lysosomes. Essays Biochem, 2016,60(2):173-180. |
[83] | Rosser MF, Washburn E, Muchowski PJ, Patterson C, Cyr DM . Chaperone functions of the E3 ubiquitin ligase CHIP. J Biol Chem, 2007,282(31):22267-22277. |
[84] | Rosenbaum JC, Fredrickson EK, Oeser ML, Garrett- Engele CM, Locke MN, Richardson LA, Nelson ZW, Hetrick ED, Milac TI, Gottschling DE, Gardner RG . Disorder targets misorder in nuclear quality control degradation: a disordered ubiquitin ligase directly recognizes its misfolded substrates. Mol Cell, 2011,41(1):93-106. |
[85] | Yanagitani K, Juszkiewicz S, Hegde RS . UBE2O is a quality control factor for orphans of multiprotein complexes. Science, 2017,357(6350):472-475. |
[86] | Goldberg AL . Protein degradation and protection against misfolded or damaged proteins. Nature, 2003,426(6968):895-899. |
[87] | Aman Y, Schmauck-Medina T, Hansen M, Morimoto RI, Simon AK, Bjedov I, Palikaras K, Simonsen A, Johansen T, Tavernarakis N, Rubinsztein DC, Partridge L, Kroemer G, Labbadia J, Fang EF . Autophagy in healthy aging and disease. Nat Aging, 2021,1(8):634-650. |
[88] | Liu J, Yi C, Xu SM . The regulatory effect of protein acetylation modification on autophagy. Hereditas (Beijing), 2022,44(1):15-24. |
刘静, 易聪, 许师明 . 蛋白质乙酰化修饰对自噬的调控作用. 遗传, 2022,44(1):15-24. | |
[89] | Tao MT, Zhang R, Shao G, Jia XE, Zhou CJ . Role of unfolded protein response in neurodegenerative diseases. Prog Physiol Sci, 2021,52(6):435-439. |
陶美彤, 张蓉, 邵国, 贾小娥, 周成江 . 未折叠蛋白反应在神经退行性疾病中的作用. 生理科学进展, 2021,52(6):435-439. | |
[90] | Li J, Guo FJ . IRE1-dependent XBP1 splicing mechanism during endoplasmic reticulum stress response. Chem Life, 2008, (3):286-288. |
李婧, 郭风劲 . 内质网应激反应时IRE1-依赖性XBP1剪接机制. 生命的化学, 2008, (3):286-288. | |
[91] | Zhang XM, Wang SC, Huang YG . Research progress on the relationship between endoplasmic reticulum stress and tumors. Chem Life, 2018,38(5):743-748. |
张旭明, 王胜超, 黄尤光 . 内质网应激与肿瘤关系的研究进展. 生命的化学, 2018,38(5):743-748. | |
[92] | Gonen N, Sabath N, Burge CB, Shalgi R . Widespread PERK-dependent repression of ER targets in response to ER stress. Sci Rep, 2019,9(1):4330. |
[93] | Pavitt GD, Ron D . New insights into translational regulation in the endoplasmic reticulum unfolded protein response. Cold Spring Harb Perspect Biol, 2012,4(6):a012278. |
[94] | Francisco S, Ferreira M, Moura G, Soares AR, Santos MAS . Does proteostasis get lost in translation? Implications for protein aggregation across the lifespan. Ageing Res Rev, 2020,62:101119. |
[1] | 何山, 赵健, 宋晓峰. N6-甲基腺苷修饰对女性生殖系统功能的影响[J]. 遗传, 2023, 45(6): 472-487. |
[2] | 商晓康, 张思萌, 倪军军. 组织蛋白酶B参与脑衰老及阿尔兹海默症发生发展研究进展[J]. 遗传, 2023, 45(3): 212-220. |
[3] | 张茜, 王子豪, 田烨. 跨组织线粒体应激信号交流调控机体衰老研究进展[J]. 遗传, 2023, 45(3): 187-197. |
[4] | 袁洁, 蔡时青. 衰老过程中行为和认知功能退化的调控机制研究[J]. 遗传, 2021, 43(6): 545-570. |
[5] | 刘紫妍, 高艾. 炎性衰老在血液系统疾病中的研究进展[J]. 遗传, 2021, 43(12): 1132-1141. |
[6] | 刘学文, 吴红梅, 白瑛, 曾群, 曹泽民, 吴秀山, 唐旻. 钾离子通道蛋白Shaker对果蝇心脏衰老的保护作用[J]. 遗传, 2021, 43(1): 94-99. |
[7] | 刘传明,丁利军,李佳音,戴建武,孙海翔. 衰老导致卵巢功能低下研究进展[J]. 遗传, 2019, 41(9): 816-826. |
[8] | 潘云枫, 王演怡, 陈静雯, 范怡梅. 线粒体代谢介导的表观遗传改变与衰老研究[J]. 遗传, 2019, 41(10): 893-904. |
[9] | 阮清伟 俞卓伟 保志军 马永兴. 免疫基因多态性与衰老和增龄相关疾病关系[J]. 遗传, 2013, 35(7): 813-822. |
[10] | 刘强,李虹,陈怀红,王静. 热量限制通过HNF3γ下调NOX4表达来抑制内皮细胞的衰老[J]. 遗传, 2012, 34(5): 573-583. |
[11] | 罗茂,张志明,高健,曾兴,潘光堂. miR319在植物器官发育中的调控作用[J]. 遗传, 2011, 33(11): 1203-1211. |
[12] | 张秀峰,唐文如,罗瑛. 衰老或肿瘤: 端粒酶和p53的相互作用[J]. 遗传, 2009, 31(5): 451-456. |
[13] | 李虹,白小涓,刘强,王宁夫 . siRNA靶向沉默p22phox表达对内皮细胞衰老抑制作用的研究[J]. 遗传, 2008, 30(9): 1175-1181. |
[14] | 沈伟,李兰,吴晓洁,周艳荣,潘庆杰,陈宏,邓继先. 外源基因转染导致小鼠体细胞过快衰老 及p16表达水平变化[J]. 遗传, 2006, 28(11): 1383-1388. |
[15] | 吕占军,王秀芳,翟羽,宋淑霞. RNA促进小鼠重组染色质白蛋白基因DNaseⅠ消化敏感性[J]. 遗传, 2003, 25(1): 30-36. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: