遗传 ›› 2025, Vol. 47 ›› Issue (4): 448-455.doi: 10.16288/j.yczz.24-313
姬亚捷1,2(), 熊杰2,3(
), 邱先进1, 王克剑2,3(
)
收稿日期:
2024-11-01
修回日期:
2025-01-06
出版日期:
2025-04-20
发布日期:
2025-02-08
通讯作者:
王克剑,博士,研究员,研究方向:基因编辑与无融合生殖。E-mail: wangkejian@caas.cn作者简介:
姬亚捷,硕士研究生,专业方向:农艺与种业。E-mail: 604016897@qq.com;姬亚捷和熊杰并列第一作者。
基金资助:
Yajie Ji1,2(), Jie Xiong2,3(
), Xianjin Qiu1, Kejian Wang2,3(
)
Received:
2024-11-01
Revised:
2025-01-06
Published:
2025-04-20
Online:
2025-02-08
Supported by:
摘要:
无融合生殖(apomixis)是指植物不经过正常的减数分裂和精卵融合形成胚和克隆种子的一种无性生殖方式。通过无融合生殖方式产生的后代在遗传上与母本植株完全一致,且基因型不随世代更迭而改变,性状也不发生分离。若能成功将无融合生殖引入主要农作物中,实现农作物杂种优势的永久固定,将产生显著的经济效益。孤雌生殖是人工无融合生殖中的关键一环,可以将有性生殖变成单性生殖。本文对近年来植物孤雌生殖基因的研究进行了总结,对已经挖掘到的孤雌生殖基因在单倍体育种以及无融合生殖体系上的应用进行了综述,以便更加深入、全面地了解孤雌生殖,进而为孤雌生殖在无融合生殖中的应用提供重要参考。
姬亚捷, 熊杰, 邱先进, 王克剑. 植物孤雌生殖研究进展:助力无融合生殖走向应用[J]. 遗传, 2025, 47(4): 448-455.
Yajie Ji, Jie Xiong, Xianjin Qiu, Kejian Wang. Progress on plant parthenogenesis: promoting the application of synthetic apomixis[J]. Hereditas(Beijing), 2025, 47(4): 448-455.
表1
目前已挖掘的孤雌生殖基因"
基因名称 | 物种来源 | 应用物种 | 孤雌生殖诱导效率(%) | 结实率(%) | 参考文献 |
---|---|---|---|---|---|
PsASGR-BBML | 狼尾草 | 珍珠粟 | 0~50.0 | 无 | [ |
烟草 | 0.2~27.3 | 无 | [ | ||
水稻 | 无 | 无 | [ | ||
玉米 | 无 | 无 | [ | ||
BnBBM1 | 甘蓝型油菜 | 拟南芥 | 0.1~12.2 | 无 | [ |
油菜 | 0.1 | 无 | [ | ||
番茄 | 1.4 | 无 | [ | ||
OsBBM1 | 水稻 | 水稻 | 5.8~32.5 | 无 | [ |
OsBBM4 | 水稻 | 水稻 | 3.2 | 21.1~82.6 | [ |
ZmBBM1 | 玉米 | 玉米 | 3.6~74.8 | 无 | [ |
ZmBBM2 | 玉米 | 玉米 | 0.4~3.5 | 无 | [ |
ToPAR | 蒲公英 | 蒲公英 | 7.1 | 无 | [ |
生菜 | 13.3~25.6 | 无 | [ | ||
谷子 | 1.4~10.2 | 6.6~39.4 | [ | ||
Lssex | 生菜 | 蒲公英 | 8.3 | 无 | [ |
OsWUS | 水稻 | 水稻 | 无 | 无 | [ |
[1] |
Chen ZJ. Molecular mechanisms of polyploidy and hybrid vigor. Trends Plant Sci, 2009, 15(2): 57-71.
pmid: 20080432 |
[2] |
Hochholdinger F, Baldauf JA. Heterosis in plants. Curr Biol, 2018, 28(18): R1089-R1092.
pmid: 30253145 |
[3] |
Whitford R, Fleury D, Reif JC, Garcia M, Okada T, Korzun V, Langridge P. Hybrid breeding in wheat: technologies to improve hybrid wheat seed production. J Exp Bot, 2013, 64(18): 5411-5428.
pmid: 24179097 |
[4] | Lewers KS, Martin SK, Hedges BR, Widrlechner MP, Palmer RG. Hybrid soybean seed production: comparison of three methods. Crop Sci, 1996, 36(6): 1560-1567. |
[5] |
Koltunow AM, Grossniklaus U. Apomixis: a developmental perspective. Annu Rev Plant Biol, 2003, 54: 547-574.
pmid: 14503003 |
[6] |
Wang KJ. Fixation of hybrid vigor in rice: synthetic apomixis generated by genome editing. aBIOTECH, 2020, 1(1): 15-20.
pmid: 36305008 |
[7] | Ye JY, Cui XF. Next-generation crop breeding methods. Mol Plant, 2019, 12(4): 470-471. |
[8] |
Hand ML, Koltunow AMG. The genetic control of apomixis: asexual seed formation. Genetics, 2014, 197(2): 441-450.
pmid: 24939990 |
[9] |
Fei XT, Shi JW, Liu YL, Niu JS, Wei AZ. The steps from sexual reproduction to apomixis. Planta, 2019, 249(6): 1715-1730.
pmid: 30963237 |
[10] |
d'Erfurth I, Jolivet S, Froger N, Catrice O, Novatchkova M, Mercier R. Turning meiosis into mitosis. PLoS Biol, 2009, 7(6): e1000124.
pmid: 19513101 |
[11] |
Xiong J, Hu FY, Ren J, Huang Y, Liu CL, Wang KJ. Synthetic apomixis: the beginning of a new era. Curr Opin Biotechnol, 2023, 79: 102877.
pmid: 36628906 |
[12] |
Sarkar KR, Coe EH. A genetic analysis of the origin of maternal haploids in maize. Genetics, 1966, 54(2): 453-464.
pmid: 17248321 |
[13] | 蔡得田. 水稻无融合生殖理论与实践. 长沙: 湖南科学技术出版社, 1998. |
[14] |
Pearcy M, Hardy O, Aron S. Thelytokous parthenogenesis and its consequences on inbreeding in an ant. Heredity (Edinb), 2006, 96(5): 377-382.
pmid: 16552429 |
[15] | Hu LX, Wang ZL. Progress on the research of apomixis related genes in plant. Hereditas (Beijing), 2008, 30(2): 155-163. |
胡龙兴, 王兆龙. 植物无融合生殖相关基因研究进展. 遗传, 2008, 30(2): 155-163. [DOI] | |
[16] | 蔡得田, 陈冬玲. 崛起的生物学科生长点——无融合生殖学. 生物工程进展, 1995, 15(3): 34-40. |
[17] | 赖来展. 作物单性(孤雌)生殖育种研究的进展. 广东农业科学, 1981, (4): 14-16. |
[18] | van Baarlen P, de Jong HJ, van Dijk PJ. Comparative cyto-embryological investigations of sexual and apomictic dandelions (Taraxacum) and their apomictic hybrids. Sex Plant Reprod, 2002, 15(1): 31-38. |
[19] |
Garcia-Aguilar M, Michaud C, Leblanc O, Grimanelli D. Inactivation of a DNA methylation pathway in maize reproductive organs results in apomixis-like phenotypes. Plant Cell, 2010, 22(10): 3249-3267.
pmid: 21037104 |
[20] |
Pillot M, Baroux C, Vazquez MA, Autran D, Leblanc O, Vielle-Calzada JP, Grossniklaus U, Grimanelli D. Embryo and endosperm inherit distinct chromatin and transcriptional states from the female gametes in Arabidopsis. Plant Cell, 2010, 22(2): 307-320.
pmid: 20139161 |
[21] |
Sukawa Y, Okamoto T. Cell cycle in egg cell and its progression during zygotic development in rice. Plant Reprod, 2018, 31(1): 107-116.
pmid: 29270910 |
[22] | Huang GZ, Gu MG. In vitro production of parthenogenetic seeds from the unpollinated ears of maize. Acta Genetica Sinica, 1995, 22(3): 230-238. |
黄国中, 谷明光. 玉米雌穗离体培养诱导孤雌生殖结实. 遗传学报, 1995, 22(3): 230-238. [DOI] | |
[23] | 辛淑荣, 高建伟, 颜廷进. 活体诱导植物孤雌生殖研究进展. 莱阳农学院学报, 1995, 12(2): 112-117. |
[24] | Xiang ZG, Hai Y, Kang MH, Zhao YY. Generation ways of haploid and its application in crop genetics and breeding. Journal of Henan Agricultural Sciences, 2011, 40(11): 17-21. |
相志国, 海燕, 康明辉, 赵永英. 单倍体的产生途径及其在作物遗传育种中的应用. 河南农业科学, 2011, 40(11): 17-21. | |
[25] | Liu ZZ, Song TM. The advances in the studies of gynogenetic haploidinduction through hybridization in maize. J Maize Sci, 1999, 7(2): 17-20. |
刘志增, 宋同明. 玉米杂交诱导孤雌生殖单倍体研究进展. 玉米科学, 1999, 7(2): 17-20. | |
[26] |
Conner JA, Mookkan M, Huo HQ, Chae K, Ozias-Akins P. A parthenogenesis gene of apomict origin elicits embryo formation from unfertilized eggs in a sexual plant. Proc Natl Acad Sci USA, 2015, 112(36): 11205-11210.
pmid: 26305939 |
[27] |
Zhang ZF, Conner J, Guo YP, Ozias-Akins P. Haploidy in Tobacco induced by PsASGR-BBML transgenes via parthenogenesis. Genes (Basel), 2020, 11(9): 1072.
pmid: 32932590 |
[28] |
Conner JA, Podio M, Ozias-Akins P. Haploid embryo production in rice and maize induced by PsASGR-BBML transgenes. Plant Reprod, 2017, 30(1): 41-52.
pmid: 28238020 |
[29] |
Boutilier K, Offringa R, Sharma VK, Kieft H, Ouellet T, Zhang LM, Hattori J, Liu CM, Miki BLA, Custers JBM, van Lookeren Campagne MM. Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell, 2002, 14(8): 1737-1749.
pmid: 12172019 |
[30] |
Chen BJ, Maas L, Figueiredo D, Zhong Y, Reis R, Li MR, Horstman A, Riksen T, Weemen M, Liu H, Siemons C, Chen SJ, Angenent GC, Boutilier K. BABY BOOM regulates early embryo and endosperm development. Proc Natl Acad Sci USA, 2022, 119(25): e2201761119.
pmid: 35709319 |
[31] |
Khanday I, Skinner D, Yang B, Mercier R, Sundaresan V. A male-expressed rice embryogenic trigger redirected for asexual propagation through seeds. Nature, 2019, 565(7737): 91-95.
pmid: 30542157 |
[32] |
Wei X, Liu CL, Chen X, Lu HW, Wang J, Yang SL, Wang KJ. Synthetic apomixis with normal hybrid rice seed production. Mol Plant, 2023, 16(3): 489-492.
pmid: 36609144 |
[33] |
Chen JY, Strieder N, Krohn NG, Cyprys P, Sprunck S, Engelmann JC, Dresselhaus T. Zygotic genome activation occurs shortly after fertilization in maize. Plant Cell, 2017, 29(9): 2106-2125.
pmid: 28814645 |
[34] |
Qi XT, Gao HM, Lv RY, Mao WB, Zhu JJ, Liu CL, Mao L, Liu XH, Xie CX. CRISPR/dCas-mediated gene activation toolkit development and its application for parthenogenesis induction in maize. Plant Commun, 2023, 4(2): 100449.
pmid: 36089769 |
[35] |
Skinner DJ, Mallari MD, Zafar K, Cho MJ, Sundaresan V. Efficient parthenogenesis via egg cell expression of maize BABY BOOM1: a step toward synthetic apomixis. Plant Physiol, 2023, 193(4): 2278-2281.
pmid: 37610248 |
[36] |
Underwood CJ, Vijverberg K, Rigola D, Okamoto S, Oplaat C, Camp RHMOD, Radoeva T, Schauer SE, Fierens J, Jansen K, Mansveld S, Busscher M, Xiong W, Datema E, Nijbroek K, Blom EJ, Bicknell R, Catanach A, Erasmuson S, Winefield C, van Tunen AJ, Prins M, Schranz ME, van Dijk PJ. A PARTHENOGENESIS allele from apomictic dandelion can induce egg cell division without fertilization in lettuce. Nat Genet, 2022, 54(1): 84-93.
pmid: 34992267 |
[37] |
Huang Y, Liang YQ, Xie YY, Rao YC, Xiong J, Liu CL, Wang C, Wang XC, Qian Q, Wang KJ. Efficient haploid induction via egg cell expression of dandelion PARTHENOGENESIS in foxtail millet (Setaria italica). Plant Biotechnol J, 2024, 22(7): 1797-1799.
pmid: 38318962 |
[38] |
Lu ZF, Shao GN, Xiong JS, Jiao YQ, Wang J, Liu GF, Meng XB, Liang Y, Xiong GS, Wang YH, Li JY. MONOCULM 3, an ortholog of WUSCHEL in rice, is required for tiller bud formation. J Genet Genomics, 2015, 42(2): 71-78.
pmid: 25697101 |
[39] |
Shao GN, Lu ZF, Xiong JS, Wang B, Jing YH, Meng XB, Liu GF, Ma HY, Liang Y, Chen F, Wang YH, Li JY, Yu H. Tiller bud formation regulators MOC1 and MOC3 cooperatively promote tiller bud outgrowth by activating FON1 expression in rice. Mol Plant, 2019, 12(8): 1090-1102.
pmid: 31048024 |
[40] |
Zuo JR, Niu QW, Frugis G, Chua NH. The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. Plant J, 2002, 30(3): 349-359.
pmid: 12000682 |
[41] |
Huang Y, Meng XB, Rao YC, Xie YY, Sun TT, Chen WQ, Wei X, Xiong J, Yu H, Li JY, Wang KJ. OsWUS-driven synthetic apomixis in hybrid rice. Plant Commun, 2024: 101136.
pmid: 39305015 |
[42] |
Vernet A, Meynard D, Lian QC, Mieulet D, Gibert O, Bissah M, Rivallan R, Autran D, Leblanc O, Meunier AC, Frouin J, Taillebois J, Shankle K, Khanday I, Mercier R, Sundaresan V, Guiderdoni E. High-frequency synthetic apomixis in hybrid rice. Nat Commun, 2022, 13(1): 7963.
pmid: 36575169 |
[43] |
Song MQ, Wang WM, Ji C, Li SN, Liu W, Hu XY, Feng AH, Ruan S, Du SY, Wang H, Dai K, Guo LB, Qian Q, Si HQ, Hu XM. Simultaneous production of high-frequency synthetic apomixis with high fertility and improved agronomic traits in hybrid rice. Mol Plant, 2024, 17(1): 4-7.
pmid: 37990497 |
[1] | 朱家华, 沈俊男, 伊旭东, 李睿, 喻赫, 丁荣荣, 庞卫军. 杂种优势形成机制和预测方法及其在猪生产中的应用与展望[J]. 遗传, 2024, 46(8): 627-639. |
[2] | 曹振林, 李金红, 周铭辉, 张曼婷, 王宁, 陈一飞, 李嘉欣, 祝青松, 宫雯珺, 杨绪晨, 方小龙, 和家贤, 李美娜. 大豆花药优势表达基因GmFLA22a调控雄性育性的功能研究[J]. 遗传, 2024, 46(4): 333-345. |
[3] | 刘向东, 吴锦文, 陆紫君, Muhammad Qasim Shahid. 同源四倍体水稻:低育性机理、改良与育种展望[J]. 遗传, 2023, 45(9): 781-792. |
[4] | 时子文, 何青, 赵卓凡, 刘孝伟, 张鹏, 曹墨菊. 玉米雄性不育资源的发掘与利用[J]. 遗传, 2022, 44(2): 134-152. |
[5] | 吴比, 胡伟, 邢永忠. 中国水稻遗传育种历程与展望[J]. 遗传, 2018, 40(10): 841-857. |
[6] | 储黄伟, 牛付安, 程灿, 周继华, 王新其, 罗小金, 袁勤, 曹黎明. 杂交粳稻花优14及其亲本孕穗期剑叶的基因表达谱芯片分析[J]. 遗传, 2015, 37(9): 932-938. |
[7] | 雍洪军 王建军 张德贵 张晓聪 李明顺 白丽 张世煌 李新海. 美洲地区主要玉米群体特征及其利用途径分析[J]. 遗传, 2013, 35(6): 703-713. |
[8] | 许晨璐 孙晓梅 张守攻. 基因差异表达与杂种优势形成机制探讨[J]. 遗传, 2013, 35(6): 714-726. |
[9] | 张翔宇,黄邓萍,谢晓红. 肉兔配套系的选育研究进展[J]. 遗传, 2012, 34(4): 401-406. |
[10] | 刘文忠. 家畜合成群体保留杂种优势的预测与培育效果评价[J]. 遗传, 2009, 31(8): 791-798. |
[11] | 倪先林,张涛,蒋开锋,杨莉,杨乾华,曹应江,文春阳,郑家奎. 杂交稻特殊配合力与杂种优势、亲本间遗传距离的相 关性[J]. 遗传, 2009, 31(8): 849-854. |
[12] | 胡龙兴,王兆龙. 植物无融合生殖相关基因研究进展[J]. 遗传, 2008, 30(2): 155-163. |
[13] | 张英杰,赵有璋,刘月琴,李玉,孙少华,孙洪新. 3个山羊群体中4个微卫星DNA多态性及其与杂种优势的关系[J]. 遗传, 2004, 26(5): 631-636. |
[14] | 王栋,张沅,孙东晓,俞英,徐桂云,李俊英. 鸡杂种与纯种间CIDH基因的差异表达 及其与杂种优势的关系[J]. 遗传, 2004, 26(3): 0-308. |
[15] | 马三梅,王永飞,叶秀粦,赵南先,梁承邺. 植物无融合生殖的遗传机理和分子机理的研究进展[J]. 遗传, 2002, 24(2): 197-199. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: