[1] Pearson R, Fleetwood J, Eaton S, Crossley M, Bao S. Krüppel-like transcription factors: a functional family. Int J Biochem Cell Biol, 2008, 40(10): 1996–2001.
[2] Dynan WS, Tjian R. The promoter-specific transcription factor Sp1 binds to upstream sequences in the SV40 early promoter. Cell, 1983, 35(1): 79–87.
[3] Schuh R, Aicher W, Gaul U, Côté S, Preiss A, Maier D, Seifert E, Nauber U, Schröder C, Kemler R, Jäckle H. A conserved family of nuclear proteins containing structural elements of the finger protein encoded by Krüppel, a Drosophila segmentation gene. Cell, 1986, 47(6): 1025–1032.
[4] Kaczynski J, Cook T, Urrutia R. Sp1- and Krüppel-like transcription factors. Genome Biol, 2003, 4(2): 206.1–206.8.
[5] Shields JM, Yang VW. Two potent nuclear localization signals in the gut-enriched Krüppel-like factor define a subfamily of closely related Krüppel proteins. J Biol Chem, 1997, 272(29): 18504–18507.
[6] Fujimura N, Vacik T, Machon O, Vlcek C, Scalabrin S, Speth M, Diep D, Krauss S, Kozmik Z. Wnt-mediated down-regulation of Sp1 target genes by a transcriptional repressor Sp5. J Biol Chem, 2007, 282(2): 1225–1237. [7] Basu P, Lung TK, Lemsaddek W, Sargent TG, Williams DC Jr, Basu M, Redmond LC, Lingrel JB, Haar JL, Lloyd JA. EKLF and KLF2 have compensatory roles in embryonic β-globin gene expression and primitive erythropoiesis. Blood, 2007, 110(9): 3417–3425.
[8] McConnell BB, Ghaleb AM, Nandan MO, Yang VW. The diverse functions of Krüppel-like factors 4 and 5 in epithelial biology and pathobiology. Bioessays, 2007, 29(6): 549–557.
[9] Eaton SA, Funnell AP, Sue N, Nicholas H, Pearson RC, Crossley M. A network of Krüppel-like factors (Klfs). J Biol Chem, 2008, 283(40): 26937–26947.
[10] Das A, Fernandez-Zapico ME, Cao S, Yao J, Fiorucci S, Hebbel RP, Urrutia R, Shah VH. Disruption of an SP2/KLF6 repression complex by SHP is required for farnesoid X receptor-induced endothelial cell migration. J Biol Chem, 2006, 281(51): 39105–39113.
[11] Chen X, Bieker JJ. Stage-specific repression by the EKLF transcriptional activator. Mol Cell Biol, 2004, 24(23): 10416–10424.
[12] Tan NY, Khachigian LM. Sp1 phosphorylation and its regulation of gene transcription. Mol Cell Biol, 2009, 29(10): 2483–2488.
[13] Quadrini KJ, Bieker JJ. EKLF/KLF1 is ubiquitinated in vivo and its stability is regulated by activation domain sequences through the 26S proteasome. FEBS Lett, 2006, 580(9): 2285–2293.
[14] Perdomo J, Verger A, Turner J, Crossley M. Role for SUMO modification in facilitating transcriptional repres-sion by BKLF. Mol Cell Biol, 2005, 25(4): 1549–1559.
[15] Lomberk G, Urrutia R. The family feud: turning off Sp1 by Sp1-like KLF proteins. Biochem J, 2005, 392(Pt 1): 1–11.
[16] Quadrini KJ, Gruzglin E, Bieker JJ. Non-random subcel-lular distribution of variant EKLF in erythroid cells. Exp Cell Res, 2008, 314(7): 1595–1604.
[17] Bouwman P, Philipsen S. Regulation of the activity of Sp1-related transcription factors. Mol Cell Endocrinol, 2002, 195(1–2): 27–38.
[18] Zhao C, Meng A. Sp1-like transcription factors are regu-lators of embryonic development in vertebrates. Dev Growth Differ, 2005, 47(4): 201–211.
[19] Asano H, Li XS, Stamatoyannopoulos G. FKLF-2: a novel Krüppel-like transcriptional factor that activates globin and other erythroid lineage genes. Blood, 2000, 95(11): 3578–3584.
[20] Feng D, Kan YW. The binding of the ubiquitous transcription factor Sp1 at the locus control region represses the expression of β-like globin genes. |