[1] 陈少游, 王峰. 一个水稻生殖发育突变体的遗传分析及基因定位[学位论文]. 福州: 福建农林大学, 2008.[2] 罗琼, 周开达, 刘国庆, 徐吉臣, 肖晗, 朱立煌. 水稻无内稃突变体的遗传分析和基因定位. 遗传学报, 2002, 29(31): 230-234.[3] Zhang QF, Xu JD, Li Y, Xu PZ, Zhang HY, Wu XJ. Morphological, anatomical and genetic analysis for a rice mutant with abnormal hull. J Genet Genomics, 2007, 34(6): 519-526.[4] 李云峰, 杨正林, 凌英华, 王楠, 任德勇, 王增, 何光华. 水稻多小花小穗突变体mf1的鉴定与 基因定位. 作物学报, 2011, 37(2): 280-285.[5] Coen ES, Meyerowitz EM. The war of the whorls: genetic interactions controlling flower development. Nature, 1991, 353(6339): 31-37.[6] Angenent GC, Franken J, Busscher M, van Dijken A, van Went JL, Dons HJ, van Tunen AJ. A novel class of MADS box genes is involved in ovule develop-ment in petunia. Plant Cell, 1995, 7(10): 1569-1582.[7] Theissen G, Saedler H. Plant biology: floral quartets. Nature, 2001, 409(6819): 469 -471.[8] Ferrario S, Immink RG, Shchennikova A, Busscher-Lange J, Angenent GC. The MADS box gene FBP2 is required for SEPALLATA function in petunia. Plant Cell, 2003, 15(4): 914- 925.[9] Yamaguchi T, Lee DY, Miyao A, Hirochika H, An G, Hi-rano HY. Functional diversification of the two C-class MADS box genes OSMADS3 and OSMADS58 in Oryza sativa. Plant Cell, 2006, 18(1): 15-28.[10] Li Y, Xu PZ, Zhang HY, Peng H, Zhang QF, Wang XD, Wu XJ. Characterization and identification of a novel mu-tant fon(t) on floral organ number and flo-ral organ identity in rice. J Genet Genomics, 2007, 34(8): 730-737.[11] 杨德卫, 叶新福. 水稻颖花突变体的最新研究进展. 分子植物育种, 2010, 8(1): 106-116.[12] 杨德卫, 曾美娟, 卢礼斌, 叶宁, 刘成德, 郑向华, 叶新福. 一个水稻矮秆突变体的遗传分析及基因定 位. 植物学报, 2011, 45(6): 617-624.[13] Quarrie S, Lazic-Jancic V, Kovacevic D, Steed A, Pekic S. Bulk segregant analysis with molecular markers and its use for improving drought resistance in maize. J Exp Biol, 1999, 50(337): 1299-1306.[14] Yuan Z, Gao S, Xue DW, Luo D, Li LT, Ding SY, Yao X, Wilson ZA, Qian Q, Zhang DB. RETARDED PALEA1 controls palea development and floral zy-gomorphy in rice. Plant Physiol, 2009, 149(1): 235-244.[15] Ambrose BA, Lrner DR, Ciceri P, Padilla CM, Yanofsky MF, Schmidt RG. Molecular and genetics analyses of Sil-kyl gene reveal conservation in floral organ specification between eudicots and monocots. Mol Cell, 2000, 5(3): 569-579.[16] 彭慧娟, 刘国华. 水稻无内稃突变体的花器形态观察与基因定位[学位论文]. 长沙: 湖南农业大学, 2007.[17] Bossinger G, Rohde W, Lundquist U, Salamini F. Genetics of barley development: mutant phenotypes and molecular aspects. In barley: Genetics, Biochemistry, Molecular Biotechnology. Edited by Shewry PR, 1992, 231-263. CAB International, Wallingford.[18] Zhu QH, Ramm K, Shivakkumar R, Dennis ES, Upadhyaya NM. The ANTHER INDEHISCENCE1 gene en-coding a single MYB domain protein is involved in anther development in rice. Plant Physiol, 2004, 135(3): 1514-1525.[19] Park JJ, Jin P, Yoon J, Yang JI, Jeong H, Ranathunge K, Schreiber L, Franke R, Lee IJ, An G. Mutation in WILTED DWARF and LETHAl 1 (WDL1) causes abnormal cuticle formation and rapid water loss in rice. Plant Mol Biol, 2010, 74(1-2): 91-103.[20] Suzaki T, Sato M, Ashikari M, Miyoshi M, Nagato Y, Hirano HY. The gene FLORAL ORGAN NUMBER1 regu-lates floral meristem size in rice and encodes a leucine-rich repeat receptor kinase orthologous to Arabidopsis CLAVATA1. Development, 2004, 131(22): 5649- 5657.[21] Kalika P, Sriram P, Usha VH. OsMADS1, a rice MADS-box factor, controls differentiation of specific cell types in the lemma and palea and is an early-acting regulator of inner floral organs. Plant J, 2005, 43(6): 915-928.[22] Lee SY, Kim J, Han JJ, Han MJ, An G. Functional analyses of the flowering time gene OsMADS50, the putative SUPPRESSOR OF OVEREXPRESSION OF CO 1/AGAMOUS-LIKE 20 (SOC1/AGL20) ortholog in rice. Plant J, 2004, 38(5): 754-764.[23] Nonomura KI, Miyoshi K, Eiguchi M, Suzuki T, Miyao A, Hirochika H, Kurata N. The MSP1 gene is neces-sary to restrict the number of cells entering into male and female sporogenesis and to initiate anther wall formation in rice. Plant Cell, 2003, 15(8): 1728- 1739.[24] Luo H, Lee JY, Hu Q, Nelson-Vasilchik K, Eitas TK, Lickwar C, Kausch AP, Chandlee JM, Hodges TK. RTS, a rice anther-specific gene is required for male fertility and its promoter sequence directs tis-sue-specific gene expression in different plant species. Plant Mol Biol, 2003, 62(3): 397-408.[25] Lee DY, Lee J, Moon S, Park SY, An G. The rice hetero-chronic gene SUPERNUMERARY BRACT regulates the transition from spikelet meristem to floral meris-tem. Plant J, 2006, 49(1): 64-78.[26] Li N, Zhang DD, Liu HS, Yin CH, Li XX, Liang WQ, Yuan Z, Xu B, Chu HW, Wang J, Wen TQ, Huang H, Luo D, Ma H, Zhang DB. The rice TAPETUM DEGENERATION RETARDATION gene is required for tapetum degradation and anther development. Plant Cell, 2006, 18(11): 2999-3014.[27] Jung KH, Han MJ, Lee YS, Kim YW, Hwang I, Kim MJ, Kim YK, Nahm BH, An G. Rice UNDEVELOPED TAPETUM1 is a major regulator of early tapetum de-velopment. Plant Cell, 2005, 17(10): 2705-2722.[28] Jang S, Hur J, Kim SJ, Han MJ, Kim SR, An G. Ectopic expression of OsYAB1 causes extra stamens and carpels in rice. Plant Mol Biol, 2004, 56(1): 133-143.[29] Li L, Yuan H, Barrena GV, Yang CY, Liang WQ, Zong J, Wilson ZA, Zhang DB. PERSISTENT TAPETAL CELL1 encodes a PHD-finger protein that is required for tapetal cell death and pollen development in rice. Plant Physiol, 2011, 156(2): 615-630.[30] Yoshida A, Suzaki T, Tanaka W, Hirano HY. The homeotic gene long sterile lemma (G1) specifies sterile lemma identity in the rice spikelet. Proc Natl Acad Sci USA, 2009, 106 (47): 20103-20108.[31] Li HF, Liang WQ, Jia RD, Yin CS, Zong J, Kong HZ, Zhang DB. The AGL6-like gene OsMADS6 regulates floral organ and meristem identities in rice. Cell Res, 2010, 20 (3): 299-313.[32] Hu LF, Liang WQ, Yin CS, Cui X, Zong J, Wang X, Hu JP, Zhang DB. Rice MADS3 regulates ROS homeostasis during late anther development. Plant Cell, 2011, 23(2): 515- 533.[33] Li HF, Liang WQ, Yin CS, Zhu L, Zhang DB. Genetic interaction of OsMADS3, DROOPING LEAF, and OsMADS13 in specifying rice floral organ identities and meristem determinacy. Plant Physiol, 2011, 156(1): 263-274.[34] Li HF, Liang WQ, Hua Y, Zhu L, Yin CS, Xu J, Dreni L, Kater MM, Zhang DB. Rice MADS6 interacts with the floral homeotic genes SUPERWOMAN1, MADS3, MADS58, MADS13, and DROOPING LEAF in specifying floral organ identities and meristem fate. Plant Cell, 2011, 23(7): 2536-2552.[35] Jin Y, Luo Q, Tong HN, Wang AJ, Cheng ZJ, Tang JF, Li DY, Zhao XF, Li XB, Wan JM, Jiao YL, Chu CC, Zhu LH. An AT-hook gene is required for palea formation and flo-ral organ number control in rice. Dev Biol, 2011, 359(2): 277-288. |