[1] | Richmond TA, Somerville CR. The cellulose synthase superfamily. Plant Physiol, 2000, 124(2): 495-498. | [2] | Liepman AH, Wightman R, Geshi N, Turner SR, Scheller HV. Arabidopsis-a powerful model system for plant cell wall research. Plant J, 2010, 61(6): 1107-1121. | [3] | Cosgrove DJ, Jarvis MC. Comparative structure and biomechanics of plant primary and secondary cell walls. Front Plant Sci, 2012, 3: 204. | [4] | Kimura S, Laosinchai W, Itoh T, Cui XJ, Linder CR, Brown RM Jr. Immunogold labeling of rosette terminal cellulose-synthesizing complexes in the vascular plant Vigna angularis. Plant Cell, 1999, 11(11): 2075-2086. | [5] | Perrin RM. Cellulose: how many cellulose synthases to make a plant? Curr Biol, 2001, 11(6): R213-R216. | [6] | Cosgrove DJ. Growth of the plant cell wall. Nat Rev Mol Cell Biol, 2005, 6(11): 850-861. | [7] | Scheible WR, Eshed R, Richmond T, Delmer D, Somerville C. Modifications of cellulose synthase confer resistance to isoxaben and thiazolidinone herbicides inArabidopsis Ixr1 mutants Proc Natl Acad Sci USA, 2001, 98(18): 10079-10084. | [8] | Taylor NG, Laurie S, Turner SR. Multiple cellulose synthase catalytic subunits are required for cellulose synthesis in Arabidopsis. Plant Cell, 2000, 12(12): 2529-2540. | [9] | Zhou XF, Wang JY, Wang XZ. Research progress of cellulose synthase genes in higher plant. Hereditas (Beijing), 2002, 24(3): 376-378. | [9] | 周晓馥, 王景余, 王兴智. 植物纤维素合成酶基因的研究进展. 遗传, 2002, 24(3): 376-378. | [10] | Delmer DP. Cellulose biosynthesis: exciting times for a difficult field of study. Annu Rev Plant Physiol Plant Mol Biol, 1999, 50: 245-276. | [11] | Richmond T. Higher plant cellulose synthases. Genome Biol, 2000, 1(4): reviews3001.1-3001.6. | [12] | Pear JR, Kawagoe Y, Schreckengost WE, Delmer DP, Stalker DM. Higher plants contain homologs of the bacterial celA genes encoding the catalytic subunit of cellulose synthase. Proc Natl Acad Sci USA, 1996, 93(22): 12637-12642. | [13] | Wang LQ, Guo K, Li Y, Tu YY, Hu HZ, Wang BR, Cui XC, Peng LC. Expression profiling and integrative analysis of the CESA/CSL superfamily in rice. BMC Plant Biol, 2010, 10(1): 282. | [14] | Kurek I, Kawagoe Y, Jacob-Wilk D, Doblin M, Delmer D. Dimerization of cotton fiber cellulose synthase catalytic subunits occurs via oxidation of the zinc-binding domains. Proc Natl Acad Sci U S A, 2002, 99(17): 11109-11114. | [15] | Appen |
[1] |
王舜泽, 江丰, 朱东丽, 杨铁林, 郭燕. Hi-C技术在三维基因组学和疾病致病机理研究中的应用[J]. 遗传, 2023, 45(4): 279-294. |
[2] |
徐思远, 寿佳, 吴强. HS5-1增强子eRNA PEARL对原钙粘蛋白α基因簇的表达调控[J]. 遗传, 2022, 44(8): 695-764. |
[3] |
赵岩, 王晨鑫, 杨天明, 李春爽, 张丽宏, 杜冬妮, 王若曦, 王静, 魏民, 巴雪青. DNA氧化损伤8-羟鸟嘌呤与肿瘤的发生发展[J]. 遗传, 2022, 44(6): 466-477. |
[4] |
朱前彬, 甘志承, 李晓翠, 张英杰, 赵合明, 黄先忠. 小鼠耳芥MAPKKK基因家族全基因组鉴定及进化与表达[J]. 遗传, 2022, 44(11): 1044-1055. |
[5] |
周聪, 周强伟, 成盛, 李国亮. CTCF在介导三维基因组形成及调控基因表达中的研究进展[J]. 遗传, 2021, 43(9): 816-821. |
[6] |
徐海冬, 宁博林, 牟芳, 李辉, 王宁. 选择性多聚腺苷酸化的生物学效应及其调控机制研究进展[J]. 遗传, 2021, 43(1): 4-15. |
[7] |
王涛涛, 杨勇, 魏唯, 林辰涛, 马留银. 互花米草NAC转录因子家族的鉴定与表达分析[J]. 遗传, 2020, 42(2): 194-211. |
[8] |
陈会友, 张建敏, 李柏森, 邓永琳, 张龚炜. 犏牛雄性不育的减数分裂基因表达与表观遗传调控研究进展[J]. 遗传, 2020, 42(11): 1081-1092. |
[9] |
高晓萌, 张治华. 生物大分子“液-液相分离”调控染色质三维空间结构和功能[J]. 遗传, 2020, 42(1): 45-56. |
[10] |
禹奇超,宋彬,邹轩轩,王岭,刘德权,李波,马昆. 乳腺癌癌旁组织特异性表达基因分析[J]. 遗传, 2019, 41(7): 625-633. |
[11] |
石田培,张莉. 全转录组学在畜牧业中的应用[J]. 遗传, 2019, 41(3): 193-205. |
[12] |
宁椿游,何梦楠,唐茜子,朱庆,李明洲,李地艳. 基于Hi-C技术哺乳动物三维基因组研究进展[J]. 遗传, 2019, 41(3): 215-233. |
[13] |
汪德州,莫晓婷,张霞,徐妙云,赵军,王磊. 玉米逆境响应相关转录因子ZmC2H2-1基因克隆及功能验证[J]. 遗传, 2018, 40(9): 767-778. |
[14] |
丁庆倩,王小婷,胡利琴,齐欣,葛林豪,徐伟亚,徐兆师,周永斌,贾冠清,刁现民,闵东红,马有志,陈明. 谷子MYB类转录因子SiMYB42提高转基因拟南芥低氮胁迫耐性[J]. 遗传, 2018, 40(4): 327-338. |
[15] |
李迎侠, 张婷婷, 马磊. 天然嵌合基因的结构特性及其对基因设计的启示[J]. 遗传, 2018, 40(2): 135-144. |
|