遗传 ›› 2016, Vol. 38 ›› Issue (9): 791-800.doi: 10.16288/j.yczz.16-120
董莲花1, 2, 冉茂良1, 2, 李智1, 2, 彭馥芝1, 2, 陈斌1, 2
收稿日期:
2016-04-05
出版日期:
2016-09-20
发布日期:
2016-09-20
通讯作者:
陈斌,博士,教授,博士生导师,研究方向:动物遗传育种。E-mail: chenbin7586@126.com
作者简介:
董莲花,硕士研究生,专业方向:动物遗传育种。E-mail: donglianhua013@126.com
基金资助:
Lianhua Dong1, 2, Maoliang Ran1, 2, Zhi Li1, 2, Fuzhi Peng1, 2, Bin Chen1, 2
Received:
2016-04-05
Online:
2016-09-20
Published:
2016-09-20
Supported by:
摘要: 泛素-蛋白酶体途径(Ubiquitin-proteasome pathway,UPP)是真核细胞内蛋白质主要降解途径,通过调节蛋白质相互作用、蛋白活性、蛋白定位及信号转导,进而在细胞周期进程、细胞凋亡、应激反应及机体生长发育等过程发挥重要作用。研究表明,UPP在人和动物精子生成中的顶体生物合成及精子尾部形成过程起着关键的调控作用,精子变态过程中UPP调控异常导致精子畸形及精子活力降低,并引发少精子症、不育及睾丸肿瘤等生殖系统疾病。本文综述了UPP在动物精子生成过程中的信号传导及调节机制,以期为后续相关研究提供参考。
董莲花, 冉茂良, 李智, 彭馥芝, 陈斌. 泛素-蛋白酶体途径在精子生成中的作用[J]. 遗传, 2016, 38(9): 791-800.
Lianhua Dong, Maoliang Ran, Zhi Li, Fuzhi Peng, Bin Chen. The role of ubiquitin-proteasome pathway in spermatogenesis[J]. Hereditas(Beijing), 2016, 38(9): 791-800.
[1] Lu L, Li D, He FC. Bioinformatics advances in protein ubiquitination. Hereditas ( Beijing ), 2013, 35(1): 17-26. 卢亮, 李栋, 贺福初. 蛋白质泛素化修饰的生物信息学研究进展. 遗传, 2013, 35(1): 17-26. [2] Chen K, Cheng HH, Zhou RJ. Molecular mechanisms and functions of autophagy and the ubiquitin-proteasome pathway. Hereditas ( Beijing ), 2012, 34(1): 5-18. 陈科, 程汉华, 周荣家. 自噬与泛素化蛋白降解途径的分子机制及其功能. 遗传, 2012, 34(1): 5-18. [3] Hao YH, Doyle JM, Ramanathan S, Gomez TS, Jia D, Xu M, Chen ZJ, Billadeau DD, Rosen MK, Potts PR. Regulation of WASH-dependent actin polymerization and protein trafficking by ubiquitination. Cell , 2013, 152(5): 1051- 1064. [4] Portbury AL, Ronnebaum SM, Zungu, M, Patterson C, Willis MS. Back to your heart: ubiquitin proteasome system-regulated signal transduction. J Mol Cell Cardiol , 2012, 52(3): 526-537. [5] Panier S, Ichijima Y, Fradet-Turcotte A, Leung CCY, Kaustov L, Arrowsmith CH, Durocher D. Tandem protein interaction modules organize the ubiquitin-dependent response to DNA double-strand breaks. Mol Cell , 2012, 47(3): 383-395. [6] Malynn BA, Ma A. Ubiquitin makes its mark on immune regulation. Immunity , 2010, 33(6): 843-852. [7] Chen BB, Glasser JR, Coon TA, Zou CB, Miller HL, Fenton M, McDyer JF, Boyiadzis M, Mallampalli RK. F-box protein FBXL2 targets cyclin D2 for ubiquitination and degradation to inhibit leukemic cell proliferation. Blood , 2012, 119(13): 3132-3141. [8] Wan LX, Tan MJ, Yang J, Inuzuka H, Dai XP, Wu T, Liu J, Shaik S, Chen GA, Deng J, Malumbres M, Letai A, krischner MW, Sun Y, Wei WY. APC Cdc20 Suppresses apoptosis through targeting bim for ubiquitination and destruction. Dev Cell , 2014, 29(4): 377-391. [9] Huntwork-Rodriguez S, Wang B, Watkins T, Ghosh AS, Pozniak CD, Bustos D, Newton K, Kirkpatrick DS, Lewcock JW. JNK-mediated phosphorylation of DLK suppresses its ubiquitination to promote neuronal apoptosis. J Cell Biol , 2013, 202(5): 747-763. [10] Fiil BK, Damgaard RB, Wagner SA, Keusekotten K, Fritsch M, Bekker-Jensen S, Mailand N, Choudhary C, Komander D, Gyrd-Hansen M. OTULIN restricts Met1- linked ubiquitination to control innate immune signaling. Mol Cell , 2013, 50(6): 818-830. [11] Rajbhandari P, Schalper KA, Solodin NM, Ellison-Zelski SJ, Lu KP, Rimm DL, Alarid ET. Pin1 modulates ERα levels in breast cancer through inhibition of phosphorylation-dependent ubiquitination and degradation. Oncogene , 2014, 33(11): 1438-1447. [12] Nawa A, Fujita-Hamabe W, Tokuyama S. Involvement of ubiquitination in the decrease of intestinal P-glycoprotein in a streptozotocin-induced diabetic mouse model. Drug Metab Pharmacokinet , 2012, 27(5): 548-552. [13] Lu LY, Wu JX, Ye L, Gavrilina GB, Saunders TL, Yu XC. RNF8-dependent histone modifications regulate nucleosome removal during spermatogenesis. Dev Cell , 2010, 18(3): 371-384. [14] Lerer-Goldshtein T, Bel S, Shpungin S, Pery E, Motro B, Goldstein RS, Bar-Sheshet SI, Breitbart H, Nir U. TMF/ ARA160: A key regulator of sperm development. Dev Biol , 2010, 348(1): 12-21. [15] Iyengar PV, Hirota T, Hirose S, Nakamura N. Membrane-associated RING-CH 10 (MARCH10 protein) is a microtubule-associated E3 ubiquitin ligase of the spermatid flagella. J Biol Chem , 2011, 286(45): 39082-39090. [16] Wykes SM, Krawetz SA. The structural organization of sperm chromatin. J Biol Chem , 2003, 278(32): 29471- 29477. [17] Yogo K, Tojima H, Ohno JY, Ogawa T, Nakamura N, Hirose S, Takeya T, Kohsaka T. Identification of SAMT family proteins as substrates of MARCH11 in mouse spermatids. Histochem Cell Biol , 2012, 137(1): 53-65. [18] Yin Y, Liu LR, Yang CY, Lin CX, Veith GM, Wang CH, Sutovsky P, Zhou PB, Ma L. Cell autonomous and non-autonomous function of CUL4B in Mouse Spermatogenesis. J Biol Chem , 2016, doi:10.1074/jbc.M115. 699660. [19] Kleiger G, Mayor T. Perilous journey: a tour of the ubiquitin-proteasome system. Trends Cell Biol , 2014, 24(6): 352-359. [20] Nir I, Huttner D, Meller A. Direct sensing and discrimination among Ubiquitin and Ubiquitin chains using solid- state nanopores. Biophys J , 2015, 108(9): 2340-2349. [21] Ikeda F, Dikic I. Atypical ubiquitin chains: new molecular signals. EMBO Rep , 2008, 9(6): 536-542. [22] Komander D, Rape M. The ubiquitin code. Annu Rev Biochem , 2012, 81(1): 203-229. [23] He S, Zhang LQ. Research progress in linear ubiquitin modification. Hereditas ( Beijing ), 2015, 37(9): 911-917. 何珊, 张令强. 线性泛素化修饰研究进展. 遗传, 2015, 37(9): 911-917. [24] Kulathu Y, Komander D. Atypical ubiquitylation-the unexplored world of polyubiquitin beyond Lys48 and Lys63 linkages. Nat Rev Mol Cell Biol , 2012, 13(8): 508-523. [25] Budhidarmo R, Nakatani Y, Day CL. RINGs hold the key to ubiquitin transfer. Trends Biochem Sci , 2012, 37 (2): 58-65. [26] Sahtoe DD, Sixma TK. Layers of DUB regulation. Trends Biochem Sci , 2015, 40(8): 456-467. [27] Nijman SMB, Luna-Vargas MPA, Velds A, Brummelkamp TR, Dirac AMG, Sixma TK, Bernards R. A genomic and functional inventory of deubiquitinating enzymes. Cell , 2005, 123(5): 773-786. [28] Meccariello R, Chianese R, Ciaramella V, Fasano S, Pierantoni R. Molecular chaperones, cochaperones, and ubiquitination/deubiquitination system: involvement in the production of high quality spermatozoa. BioMed Res Int , 2014, 2014: 561426. [29] Kolasa A, Misiakiewicz K, Marchlewicz M, Wiszniewska B. The generation of spermatogonial stem cells and spermatogonia in mammals. Reprod Biol , 2012, 12(1): 5-23. [30] Chuykin I, Stauske M, Guan KM. Spermatogonial stem cells. In: Steinhoff G, ed. Regenerative Medicine. Netherlands: Springer, 2013: 219-249. [31] O’Donnell L, O’Bryan MK. Microtubules and spermatogenesis. Semin Cell Dev Biol , 2014, 30: 45-54. [32] McKay DJ, Lieb JD. A split personality for nucleosomes. Cell , 2014, 159(6): 1249-1251. [33] Ward WS, Coffey DS. DNA packaging and organization in mammalian spermatozoa: comparison with somatic cells. Biol Reprod , 1991, 44(4): 569-574. [34] Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res , 2011, 21(3): 381-395. [35] Rathke C, Baarends WM, Jayaramaiah-Raja S, Bartkuhn M, Renkawitz R, Renkawitz-Pohl R. Transition from a nucleosome-based to a protamine-based chromatin configuration during spermiogenesis in Drosophila . J Cell Sci , 2007, 120(9): 1689-1700. [36] Chen HY, Sun JM, Zhang Y, Davie JR, Meistrich ML. Ubiquitination of histone H3 in elongating spermatids of rat testes. J Biol Chem , 1998, 273(21): 13165-13169. [37] Liu ZQ, Miao DS, Xia QW, Hermo L, Wing SS. Regulated expression of the ubiquitin protein ligase, E3 Histone / LASU1/Mule/ARF-BP1/HUWE1, during spermatogenesis. Dev Dyn , 2007, 236(10): 2889-2898. [38] Qian MX, Pang Y, Liu CH, Haratake K, Du BY, Ji DY, Wang GF, Zhu QQ, Song Wei, Yu Y, Zhang XX, Huang HT, Miao SY, Chen LB, Zhang ZH, Liang YN, Liu S, Cha H, Yang D, Zhai YG, Komatsu T, Tsuruta F, Li HT, Cao C, Li W, Li GH, Cheng YF, Chiba T, Wang LF, Goldberg AL, Shen Y, Qiu XB. Acetylation-mediated proteasomal degradation of core histones during DNA repair and spermatogenesis. Cell , 2013, 153(5): 1012-1024. [39] Khor B, Bredemeyer AL, Huang CY, Turnbull IR, Evans R, Maggi LB Jr, White JM, Walker LM, Carnes K, Hess AR, Sleckman BP. Proteasome activator PA200 is required for normal spermatogenesis. Mol Cell Biol , 2006, 26(8): 2999-3007. [40] Roest HP, van Klaveren J, de Wit J, van Gurp CG, Koken MHM, Vermey M, van Roijen JH, Hoogerbrugge JW, Vreeburg JTM, Baarends WM, Bootsma D, Grootegoed JA, Hoeijmakers JHJ. Inactivation of the HR6B ubiquitin-conjugating DNA repair enzyme in mice causes male sterility associated with chromatin modification. Cell , 1996, 86(5): 799-810. [41] Wood A, Krogan NJ, Dover J, Schneider J, Heidt J, Boateng MA, Dean K, Golshani A, Zhang Y, Greenblatt JF, Johnston M, Shilatifard A. Bre1, an E3 ubiquitin ligase required for recruitment and substrate selection of Rad6 at a promoter. Mol Cell , 2003, 11(1): 267-274. [42] Boissonnas CC, Jouannet P, Jammes H. Epigenetic disorders and male subfertility. Fertil Steril , 2013, 99(3): 624- 631. [43] Roqueta-Rivera M, Abbott TL, Sivaguru M, Hess RA, Nakamura MT. Deficiency in the omega-3 fatty acid pathway results in failure of acrosome biogenesis in mice. Biol Reprod , 2011, 85(4): 721-732. [44] Haraguchi CM, Mabuchi T, Hirata S, Shoda T, Hoshi K, Yokota S. Ubiquitin signals in the developing acrosome during spermatogenesis of rat testis: an immunoelectron microscopic study. J Histochem Cytochem , 2004, 52(11): 1393-1403. [45] Shields SB, Piper RC. How ubiquitin functions with ESCRTs. Traffic , 2011, 12(10): 1306-1317. [46] Morokuma Y, Nakamura N, Kato A, Notoya M, Yamamoto Y, Sakai Y, Fukuda H, Yamashina S, Hirata Y, Hirose S. MARCH-XI, a novel transmembrane ubiquitin ligase implicated in ubiquitin-dependent protein sorting in developing spermatids. J Biol Chem , 2007, 282(34): 24806- 24815. [47] Rivkin E, Kierszenbaum AL, Gil M, Tres LL. Rnf19a, a ubiquitin protein ligase, and Psmc3, a component of the 26S proteasome, tether to the acrosome membranes and the head-tail coupling apparatus during rat spermatid development. Dev Dyn , 2009, 238(7): 1851-1861. [48] Zhao BQ, Ito K, Iyengar PV, Hirose S, Nakamura N. MARCH7 E3 ubiquitin ligase is highly expressed in developing spermatids of rats and its possible involvement in head and tail formation. Histochem Cell Biol , 2013, 139(3): 447-460. [49] Yi YJ, Zimmerman SW, Manandhar G, Odhiambo JF, Kennedy C, Jonáková V, Maňásková-Postlerová P, Sutovsky M, Park CS, Sutovsky P. Ubiquitin-activating enzyme (UBA1) is required for sperm capacitation, acrosomal exocytosis and sperm-egg coat penetration during porcine fertilization. Int J Androl , 2012, 35(2): 196-210. [50] Rajender S, Rahul P, Mahdi AA. Mitochondria, spermatogenesis and male infertility. Mitochondrion , 2010, 10(5): 419-428. [51] Riparbelli MG, Callaini G. The Drosophila parkin homologue is required for normal mitochondrial dynamics during spermiogenesis. Dev Biol , 2007, 303(1): 108-120. [52] Fisk HA, Yaffe MP. A role for ubiquitination in mitochondrial inheritance in Saccharomyces cerevisiae . J Cell Biol , 1999, 145(6): 1199-1208. [53] Luo SM, Ge ZJ, Wang ZW, Jiang ZZ, Wang ZB, Ouyang YC, Hou Y, Schatten H, Sun QY. Unique insights into maternal mitochondrial inheritance in mice. Proc Natl Acad Sci USA , 2013, 110(32): 13038-13043. [54] Sutovsky P, Moreno RD, Ramalho-Santos J, Dominko T, Simerly C, Schatten G. Ubiquitinated sperm mitochondria, selective proteolysis, and the regulation of mitochondrial inheritance in mammalian embryos. Biol Reprod , 2000, 63(2): 582-590. [55] Nakamura N, Kimura Y, Tokuda M, Honda S, Hirose S. MARCH-V is a novel mitofusin 2- and Drp1-binding protein able to change mitochondrial morphology. EMBO Rep , 2006, 7(10): 1019-1022. [56] Liu YQ, Bai G, Zhang H, Su D, Tao DC, Yang Y, Ma YX, Zhang SZ. Human RING finger protein ZNF645 is a novel testis-specific E3 ubiquitin ligase. Asian J Androl , 2010, 12(5): 658-666. [57] Rodriguez CI, Stewart CL. Disruption of the ubiquitin ligase HERC4 causes defects in spermatozoon maturation and impaired fertility. Dev Biol , 2007, 312(2): 501-508. [58] Fischer KA, Van Leyen K, Lovercamp KW, Manandhar G, Sutovsky M, Feng D, Safranski T, Sutovsky P. 15- Lipoxygenase is a component of the mammalian sperm cytoplasmic droplet. Reproduction , 2005, 130(2): 213-222. [59] Jackson S, Xiong Y. CRL4s: the CUL4-RING E3 ubiquitin ligases. Trends Biochem Sci , 2009, 34(11): 562-570. [60] Wang YL, Liu WZ, Sun YJ, Kwon J, Setsuie R, Osaka H, Noda M, Aoki S, Yoshikawa Y, Wada K. Overexpression of ubiquitin carboxyl-terminal hydrolase L1 arrests spermatogenesis in transgenic mice. Mol Reprod Dev , 2006, 73(1): 40-49. [61] Kwon J, Wang YL, Setsuie R, Sekiguchi S, Sakurai M, Sato Y, Lee WW, Ishii Y, Kyuwa S, Noda M, Wada K, Yoshikawa Y. Developmental regulation of ubiquitin C- terminal hydrolase isozyme expression during spermatogenesis in mice. Biol Reprod , 2004, 71(2): 515-521. [62] Jervis KM, Robaire B. Dynamic changes in gene expression along the rat epididymis. Biol Reprod , 2001, 65(3): 696-703. [63] Kwon J, Mochida K, Wang YL, Sekiguchi S, Sankai T, Aoki S, Ogura A, Yoshikawa Y, Wada K. Ubiquitin C-terminal hydrolase L-1 is essential for the early apoptotic wave of germinal cells and for sperm quality control during spermatogenesis. Biol Reprod , 2005, 73(1): 29-35. [64] Wei JC, He FC, Wang J. CYLD: a deubiquitinase. Chin Bull Life Sci , 2013, 25(4): 352-357. 魏俊成, 贺福初, 王建. 去泛素化酶CYLD. 生命科学, 2013, 25(4): 352-357. [65] Wright A, Reiley WW, Chang M, Jin W, Lee AJ, Zhang MY, Sun SC. Regulation of early wave of germ cell apoptosis and spermatogenesis by deubiquitinating enzyme CYLD. Dev Cell , 2007, 13(5): 705-716. [66] Bedard N, Yang YM, Gregory M, Cyr DG, Suzuki J, Yu XM, Chian RC, Hermo L, O'Flaherty C, Smith CE, Clarke HJ, Wing SS. Mice lacking the USP2 deubiquitinating enzyme have severe male subfertility associated with defects in fertilization and sperm motility. Biol Reprod , 2011, 85(3): 594-604. [67] Ferlin A, Arredi B, Speltra E, Cazzadore C, Selice R, Garolla A, Lenzi A, Foresta C. Molecular and clinical characterization of Y chromosome microdeletions in infertile men: a 10-year experience in Italy. J Clin Endocrinol Metab , 2007, 92(3): 762-770. [68] Vaden JH, Bhattacharyya BJ, Chen PC, Watson JA, Marshall AG, Philips S, Wilson JA, King GD, Miller RJ, Wilson SM. Ubiquitin-specific protease 14 regulates c-Jun N-terminal kinase signaling at the neuromuscular junction. Mol Neurodegener , 2015, 10(1): 3. [69] Lin YW, Hsu TH, Yen PH. Localization of ubiquitin specific protease 26 at blood-testis barrier and near Sertoli cell-germ cell interface in mouse testes. Int J Androl , 2011, 34(5pt2): e368-e377. [70] Shi YC, Wei L, Cui YX, Shang XJ, Wang HY, Xia XY, Zhou YC, Li H, Jiang HT, Zhu WM, Huang YF. Association between ubiquitin-specific protease USP26 polymorphism and male infertility in Chinese men. Clin Chim Acta , 2011, 412(7-8): 545-549 [71] Kim YK, Kim YS, Yoo KJ, Lee HJ, Lee DR, Yeo CY, Baek KH. The expression of Usp42 during embryogenesis and spermatogenesis in mouse. Gene Expr Patterns , 2007, 7(1-2): 143-148. [72] Berruti G, Ripolone M, Ceriani M. USP8, a regulator of endosomal sorting, is involved in mouse acrosome biogenesis through interaction with the spermatid ESCRT- 0 complex and microtubules. Biol Reprod , 2010, 82(5): 930-939. [73] Wright MH, Berlin I, Nash PD. Regulation of endocytic sorting by ESCRT-DUB-mediated deubiquitination. Cell Biochem Biophys , 2011, 60(1-2): 39-46. [74] Moreno RD, Palomino J, Schatten G. Assembly of spermatid acrosome depends on microtubule organization during mammalian spermiogenesis. Dev Biol , 2006, 293 (1): 218-227. [75] Kopanja D, Roy N, Stoyanova T, Hess RA, Bagchi S, Raychaudhuri P. Cul4A is essential for spermatogenesis and male fertility. Dev Biol , 2011, 352(2): 278-287. [76] Chen C, Sun X, Guo P, Dong X Y, Sethi P, Zhou W, Zhou Z, Petros J, Frierson H F Jr, Vessella RL, Atfi A, Dong JT. Ubiquitin E3 ligase WWP1 as an oncogenic factor in human prostate cancer. Oncogene , 2007, 26(16): 2386-2394. [77] Luddi A, Margollicci M, Gambera L, Serafini F, Cioni M, De Leo V, Balestri P, Piomboni P. Spermatogenesis in a man with complete deletion of USP9Y . N Engl J Med , 2009, 360(9): 881-885. |
[1] | 赵鑫,杨化强. 大动物精原干细胞研究进展[J]. 遗传, 2019, 41(8): 686-702. |
[2] | 张卿义, 张樱子, 沈凯, 张舒羽, 曹建平. 组蛋白泛素化修饰及其在DNA损伤应答中的作用[J]. 遗传, 2019, 41(1): 29-40. |
[3] | 袁志恒,赵艳梅. piRNA/PIWI功能调控与精子发生[J]. 遗传, 2017, 39(8): 683-691. |
[4] | 何珊, 张令强. 线性泛素化修饰研究进展[J]. 遗传, 2015, 37(9): 911-917. |
[5] | 张朝晖, 康现江, 穆淑梅. 组蛋白磷酸化修饰与精子发生[J]. 遗传, 2014, 36(3): 220-227. |
[6] | 卢亮,李栋,贺福初. 蛋白质泛素化修饰的生物信息学研究进展[J]. 遗传, 2013, 35(1): 17-26. |
[7] | 葛少钦,李建忠,张晓静. 精子发生过程中组蛋白甲基化和乙酰化[J]. 遗传, 2011, 33(9): 939-946. |
[8] | 张秀军,刘美玲,贾孟春. 精子发生过程中基因表达转录水平的调控[J]. 遗传, 2011, 33(12): 1300-1307. |
[9] | 孟雅楠,孟丽军,宋亚娟,刘美玲,张秀军. 小RNA分子与精子发生调控[J]. 遗传, 2011, 33(1): 9-16. |
[10] | 聂晶,春艳,令强 . 泛素蛋白连接酶MDM2活性及稳定性调控的研究进展[J]. 遗传, 2009, 31(10): 993-998. |
[11] | 汪斌,刘志宇,苗龙. 秀丽线虫精子发生和精子受精的研究进展[J]. 遗传, 2008, 30(6): 677-686. |
[12] | 郭艳合,刘立,蔡荣,钱程. 小RNA家族的新成员—piRNA[J]. 遗传, 2008, 30(1): 28-34. |
[13] | 葛少钦,康现江,刘桂荣,穆淑梅. 精子发生过程中的相关基因[J]. 遗传, 2008, 30(1): 3-12. |
[14] | 邢晓为,李麓芸,卢光琇. SRG4在出生后小鼠睾丸及隐睾中的表达特性[J]. 遗传, 2007, 29(6): 699-704. |
[15] | 陈云贵,宋平,吕道远,周伟,桂建芳. Le 斑马鱼nanos1基因在配子发生中的原位杂交研究[J]. 遗传, 2005, 27(4): 589-574. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: