遗传 ›› 2020, Vol. 42 ›› Issue (8): 788-798.doi: 10.16288/j.yczz.20-141
毛卓卓, 宫宇, 史贵霞, 李亚丽, 喻德跃, 黄方
收稿日期:
2020-05-21
修回日期:
2020-07-07
出版日期:
2020-08-20
发布日期:
2020-08-07
作者简介:
毛卓卓,在读硕士研究生,专业方向:作物遗传育种。
基金资助:
Zhuozhuo Mao, Yu Gong, Guixia Shi, Yali Li, Deyue Yu, Fang Huang
Received:
2020-05-21
Revised:
2020-07-07
Online:
2020-08-20
Published:
2020-08-07
Supported by:
摘要:
E2泛素结合酶(ubiquitin-conjugating enzyme)参与植物的抗逆、生长发育等多种生物途径的调控,其功能研究在拟南芥(Arabidopsis thaliana)中的报道较多,但在重要经济作物大豆(Glycine max)中鲜有报道。本研究从大豆“南农94-16”中克隆了1个与大豆子叶折叠突变体可能相关的基因Glyma.12G161200,序列分析结果表明该基因编码一个E2泛素结合酶,因此将其命名为GmUBC1。该基因编码区全长为462 bp,编码一个含153个氨基酸的蛋白,预测其分子量为17.25 kDa,等电点为6.74。利用qRT-PCR技术对GmUBC1在大豆不同组织中的表达模式及其对不同非生物胁迫和激素处理的响应模式进行分析,发现该基因在开花后40 d种子中表达量最高,在PEG、低温、JA和ABA处理下表达下调。亚细胞定位分析发现GmUBC1蛋白在整个细胞内都有表达。进一步在拟南芥中异源表达GmUBC1,发现转基因株系的千粒重和总氨基酸含量显著提高,表明异源过表达GmUBC1可以调控种子重量和氨基酸含量,为大豆品质改良提供了基因资源。
毛卓卓, 宫宇, 史贵霞, 李亚丽, 喻德跃, 黄方. 大豆E2泛素结合酶基因GmUBC1的克隆及在拟南芥中的异源表达[J]. 遗传, 2020, 42(8): 788-798.
Zhuozhuo Mao, Yu Gong, Guixia Shi, Yali Li, Deyue Yu, Fang Huang. Cloning of the soybean E2 ubiquitin-conjugating enzyme GmUBC1 and its expression in Arabidopsis thaliana[J]. Hereditas(Beijing), 2020, 42(8): 788-798.
[1] |
Hershko A, Ciechanover A . The Ubiquitin system. Annu Rev Biochem, 1998,67:425-479.
doi: 10.1146/annurev.biochem.67.1.425 pmid: 9759494 |
[2] |
Kepinski S, Leyser O . The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature, 2005,435(7041):446-451.
doi: 10.1038/nature03542 pmid: 15917798 |
[3] |
Ariizumi T, Lawrence PK, Steber CM . The role of two f-box proteins, SLEEPY1 and SNEEZY, in arabidopsis gibberellin signaling. Plant Physiol, 2011,155(2):765-775.
doi: 10.1104/pp.110.166272 |
[4] |
Santner A, Estelle M . The ubiquitin-proteasome system regulates plant hormone signaling. Plant J, 2010,61(6):1029-1040.
doi: 10.1111/j.1365-313X.2010.04112.x pmid: 20409276 |
[5] | Dong FC, Song CP . The ubiquitin and its physiological functions in plants. Plant Physiol, 1999,35(1):54-59. |
董发才, 宋纯鹏 . 植物细胞中的泛素及其生理功能. 植物生理学通讯, 1999,35(1):54-59. | |
[6] | Sheng XY, Hu ZH, Lin JX . Ubiquitin/proteasome pathway and it's role in high plant sexual reproduction. Acta Bot Boreali-Occident Sin, 2004,24(8):1527-1536. |
盛仙永, 胡正海, 林金星 . 泛素/蛋白酶体途径及其在高等植物有性生殖中的作用. 西北植物学报, 2004,24(8):1527-1536. | |
[7] |
Ingvardsen C, Veierskov B . Ubiquitin- and proteasome- dependent proteolysis in plants. Physiol Plant, 2010,112(4):451-459.
doi: 10.1034/j.1399-3054.2001.1120401.x pmid: 11473704 |
[8] |
Moon J, Parry G, Estelle M . The ubiquitin-proteasome pathway and plant development. Plant Cell, 2004,16(12):3181-3195.
doi: 10.1105/tpc.104.161220 pmid: 15579807 |
[9] |
Smalle J. Vierstra RD , The Ubiquitin 26S proteasome proteolytic pathway. Annu Rev Plant Biol, 2004,55(1):555-590.
doi: 10.1146/annurev.arplant.55.031903.141801 |
[10] |
Dreher K, Callis J . Ubiquitin, hormones and biotic stress in plants. Ann Bot, 2007,99(5):787-822.
doi: 10.1093/aob/mcl255 pmid: 17220175 |
[11] |
Zhang YY, Yang CW, Li Y, Zheng NY, Chen H, Zhao QZ, Gao T, Guo HS, Xie Q . SDIR1 is a RING finger E3 ligase that positively regulates stress-responsive abscisic acid signaling in Arabidopsis. Plant Cell, 2007,19(6):1912-1929.
doi: 10.1105/tpc.106.048488 pmid: 17573536 |
[12] |
Shi SQ, Shi Z, Jiang ZP, Qi LW, Sun XM, Li CX, Liu JF, Xiao WF, Zhang SG . Effects of exogenous GABA on gene expression of Caragana intermedia roots under NaCl stress: regulatory roles for H2O2 and ethylene production. Plant Cell Environ, 2010,33(2):149-162.
doi: 10.1111/j.1365-3040.2009.02065.x pmid: 19895397 |
[13] | Wang JL, Shi SQ, Jia LQ, Jiang ZP . Progress on functions of ubiquitin-conjugating Enzyme (E2) in plants. Biotechnol Bull, 2010(4):7-10. |
王金利, 史胜青, 贾利强, 江泽平 . 植物泛素结合酶E2功能研究进展. 生物技术通报, 2010(04):7-10. | |
[14] | Xu CX, Jiang J, Liu TT, Wang YC, Liu GF, Yang CP . Sequence analysis and function determination of E2s gene from Tamarix androssowii. J Northeast Fore Univ, 2007,35(11):1-4. |
徐晨曦, 姜静, 刘甜甜, 王玉成, 刘桂丰, 杨传平 . 柽柳泛素结合酶基因(E2s)的序列分析及功能验证. 东北林业大学学报, 2007,35(11):1-4. | |
[15] |
Xu DB, Yu YH, Han QL, Ma YN, Gao SQ, Tian Y, Xu ZS, Li LC, Qu YY, Ma YZ, Chen M, Chen YF . Characteristics and function of a GmDREB5-Interacting protein GmUBC13 in soybean. Sci Agric Sin, 2014,47(18):3534-3544.
doi: 10.3864/j.issn.0578-1752.2014.18.002 |
[16] | Chen C, Qiao YH, Jing CX, Lu WX, Jin XX, Yu LJ . Identification of soybean UBC gene family and preliminary functional analysis of GmUBC46. J Plant Genet Resour, 2020,21(1):154-163. |
陈超, 乔艳花, 井常煦, 卢文秀, 金晓霞, 于丽杰 . 大豆UBC基因家族鉴定及GmUBC46基因的功能初步分析. 植物遗传资源学报, 2020,21(1):154-163. | |
[17] |
Wan XR, Mo AQ, Liu S, Yang LX, Li L . Constitutive expression of a peanut ubiquitin-conjugating enzyme gene in Arabidopsis confers improved water-stress tolerance through regulation of stress-responsive gene expression. J Biosci Bioeng, 2011,111(4):478-484.
doi: 10.1016/j.jbiosc.2010.11.021 |
[18] |
Xu L, Ménard R, Berr A, Fuchs J, Cognat V, Meyer D, Shen WH . The E2 ubiquitin-conjugating enzymes, AtUBC1 and AtUBC2, play redundant roles and are involved in activation of FLC expression and repression of flowering in Arabidopsis thaliana. Plant J, 2008,57(2):279-288.
doi: 10.1111/j.1365-313X.2008.03684.x pmid: 18798874 |
[19] |
Wang YY, Wang WH, Cai JH, Zhang YR, Qin GZ, Tian SP . Tomato nuclear proteome reveals the involvement of specific E2 ubiquitin-conjugating enzymes in fruit ripening. Genome Biol, 2014,15(12):548.
doi: 10.1186/s13059-014-0548-2 pmid: 25464976 |
[20] |
Gao YY, Wang Y, Xin HP, Li SH, Liang ZC . Involvement of ubiquitin-conjugating enzyme (E2 gene family) in ripening process and response to cold and heat stress of Vitis vinifera. Sci Rep, 2017,7(1):13290.
doi: 10.1038/s41598-017-13513-x pmid: 29038452 |
[21] | Han SY . Construction of mutant population in soybean (Glycine max(L.)Merr.) and study on curled-cotyledon mutation related genes [Dissertation]. Nanjing Agric Univ, 2008. |
韩锁义 . 大豆突变体库的构建及子叶折叠突变相关基因的初步研究[学位论文]. 南京农业大学, 2008. | |
[22] |
Shi GX, Huang F, Gong Y, Xu GL, Yu JJ, Hu ZB, Cai QS, Yu DY . RNA-Seq analysis reveals that multiple phytohormone biosynthesis and signal transduction pathways are reprogrammed incurled-cotyledonsmutant of soybean [Glycine max(L.) Merr]. BMC Genomics, 2014,15(1):510.
doi: 10.1186/1471-2164-15-510 |
[23] | Yin LJ, Chen Y, Liu P, Chen M, Li LC, Xu ZS, Ma YZ. Expression pattern and protein interaction analysis of a wheat ubiquitin-conjugating enzyme TaE2. J Plant Genet Resour, 2014,15(01): 144-148+152. |
尹丽娟, 陈阳, 刘沛, 陈明, 李连城, 徐兆师, 马有志 . 小麦泛素结合酶TaE2的表达分析及蛋白互作. 植物遗传资源学报, 2014, 15(01): 144-148+152. | |
[24] | Wang HL, Han JJ, Li WH, Liu W . Polymorphism analysis of SBEⅡa and SBEⅡb originated from different spring wheat cultivars with starch resistant contents. Xinjiang Agric Sci, 2015,52(6):981-987. |
王昊龙, 韩俊杰, 李卫华, 刘伟 . 抗性淀粉含量不同的小麦品种(系)淀粉分支酶SBEⅡa和SBEⅡb基因多态性分析. 新疆农业科学, 2015,52(6):981-987. | |
[25] |
Kruglyak L . What is significant in whole-genome linkage disequilibrium studies? Am J Hum Genet, 1997,61(4):810-812.
doi: 10.1086/514893 pmid: 9382090 |
[26] | Teyssier E, Boureauv L, Chen WW, Lui R, Degraeve- Guibaul C, Stammitti L, Hong YG, Gallusci P . 8-Epigenetic regulation during fleshy fruit development and ripening. Applied Plant Genomics & Biotechnology, 2015, 133-151. |
[27] | Ma S, Zhang P, Wang Y, Xie LN . Research advances in the regulation of DNA methylation by chromatin remodeling factor gene DDM1. Molecular Plant Breeding, 2019,17(21):7138-7144. |
马爽, 张鹏, 王宇, 解莉楠 . 染色质重塑因子DDM1基因调控植物DNA甲基化的研究进展. 分子植物育种, 2019,17(21):7138-7144. | |
[28] | Zhang YH, Yi HY, Fang M, Rong TZ, Cao MJ . Cytological observation and DNA methylation analysis of two new cytoplasmic male sterile lines of maize during microsporogenesis. Hereditas(Beijing), 2014,36(10):1021-1026. |
张艳花, 易洪杨, 房明, 荣廷昭, 曹墨菊 . 玉米新选细胞质雄性不育系小孢子发育的细胞学观察及DNA甲基化分析. 遗传, 2014,36(10):1021-1026. | |
[29] |
Corem S, Adi DF, jouffroy O, Florian M, Tzahi A, Bouché N. Redistribution of CHH methylation and small interfering RNAs across the genome of tomato ddm1 mutants. Plant Cell, 2018,30(7):1628-1644.
doi: 10.1105/tpc.18.00167 pmid: 29875274 |
[30] | Huang XQ, Li DD, Wu J . Long non-coding RNAs in plants. Hereditas(Beijing), 2015,37(4):344-359. |
黄小庆, 李丹丹, 吴娟 . 植物长链非编码RNA研究进展. 遗传, 2015,37(4):344-359. | |
[31] | Zang DD, LIU WJ, Wang YC . Proteins Interacting with up-stream regulators of W-box in an ERF gene ( ThERF1) from Tamarix hispida. J Northeast Fore Univ, 2014,42(2):120-123, 132. |
臧丹丹, 刘文进, 王玉成 . 柽柳ThERF1基因上游调控因子W-box互作蛋白. 东北林业大学学报, 2014,42(2):120-123, 132. | |
[32] |
Lee H, Xiong L, Gong Z, Ishitani M, Stevenson B, Zhu JK . The Arabidopsis HOS1 gene negatively regulates cold signal transduction and encodes a RING finger protein that displays cold-regulated nucleo-cytoplasmic partitioning. Genes Dev, 2001,15(7):912-924.
doi: 10.1101/gad.866801 pmid: 11297514 |
[33] |
Jiang J, Ballinger CA, Wu Y, Dai Q, Cyr DM, Höhfeld J, Patterson C . CHIP is a U-box-dependent E3 ubiquitin ligase: identification of Hsc70 as a target for ubiquitylation. J Biol Chem, 2001,276(46):42938-42944.
doi: 10.1074/jbc.M101968200 pmid: 11557750 |
[34] |
Chung E, Cho CW, So HA, Kang JS, Chung YS, Lee JH . Overexpression of VrUBC1, a mung bean E2 ubiquitin- conjugating enzyme, enhances osmotic stress tolerance in Arabidopsis. PLoS One, 2013,8(6):e66056.
doi: 10.1371/journal.pone.0066056 pmid: 23824688 |
[35] | Jue DW, Sang XL, Shu B, Liu LQ, Wang YC, Shi SY . Functional analysis of a ubiquitin-conjugating enzyme gene ZmUBC-76 in maize. Chinese Journal of Tropical Crops, 2017,38(08):1507-1511. |
决登伟, 桑雪莲, 舒波, 刘丽琴, 王一承, 石胜友 . 玉米泛素结合酶基因ZmUBC-76的功能分析. 热带作物学报, 2017,38(8):1507-1511. | |
[36] |
Zhou GA, Chang RZ, Qiu LJ . Overexpression of soybean ubiquitin-conjugating enzyme gene GmUBC2 confers enhanced drought and salt tolerance through modulating abiotic stress-responsive gene expression in Arabidopsis. Plant Mol Biol, 2010,72(4-5):357-367.
doi: 10.1007/s11103-009-9575-x |
[37] |
Wang S, Cao L, Wang H . Arabidopsis ubiquitin-conjugating enzyme UBC22 is required for female gametophyte development and likely involved in Lys11-linked ubiquitination. J Exp Bot, 2016,67(11):3277-3288.
doi: 10.1093/jxb/erw142 pmid: 27069118 |
[38] |
Li WF, Schmidt W . A lysine-63-linked ubiquitin chain- forming conjugase, UBC13, promotes the developmental responses to iron deficiency in Arabidopsis roots. Plant J, 2010,62(2):330-43.
doi: 10.1111/j.1365-313X.2010.04150.x pmid: 20113438 |
[39] | Shi GX . Transcriptome analysis of curled-cotyledons mutant of soybean and functional study of related genes [Dissertation]. Nanjing Agric Univ, 2014. |
史贵霞 . 大豆子叶折叠突变体cco的转录组分析及相关基因的功能研究[学位论文]. 南京农业大学, 2014. |
[1] | 赖笔威, 陈磊, 芦思佳. 大豆光周期适应性研究进展[J]. 遗传, 2023, 45(9): 793-800. |
[2] | 文钟灵, 杨旻恺, 陈星雨, 郝晨宇, 任然, 储淑娟, 韩洪苇, 林红燕, 陆桂华, 戚金亮, 杨永华. 酸铝胁迫土壤中耐铝大豆根际不同部位细菌群落结构、功能及其对促生菌富集作用的研究[J]. 遗传, 2021, 43(5): 487-500. |
[3] | 孙小媛, 王一帆, 王韫慧, 蔺佳雨, 李金红, 丘远涛, 方小龙, 孔凡江, 李美娜. 大豆细胞核雄性不育基因研究进展[J]. 遗传, 2021, 43(1): 52-65. |
[4] | 李慧卿, 陈超, 陈冉冉, 宋雪薇, 李佶娜, 朱延明, 丁晓东. 利用CRISPR/Cas9双基因敲除系统初步解析大豆GmSnRK1.1和GmSnRK1.2对ABA及碱胁迫的响应[J]. 遗传, 2018, 40(6): 496-507. |
[5] | 郭文雅,崔艳梅,王婷婷,喻德跃,黄方. 野生大豆花发育相关基因GsLFY的功能研究[J]. 遗传, 2017, 39(1): 56-65. |
[6] | 王楠, 赵士振, 吕孟华, 向凤宁, 李朔. 大豆耐盐相关QTLs鉴定和功能基因研究进展[J]. 遗传, 2016, 38(11): 992-1003. |
[7] | 张丹,宋海娜,程浩,喻德跃. 大豆耐低磷相关基因的定位与克隆[J]. 遗传, 2015, 37(4): 336-343. |
[8] | 邱红梅,郝文媛,高淑芹,马晓萍,郑宇宏,孟凡凡,范旭红,王洋,王跃强,王曙明. 大豆含硫氨基酸相关酶基因发掘[J]. 遗传, 2014, 36(9): 934-942. |
[9] | 吴楠, 王丕武, 李丹, 代力强, 郑成忠, 卢实, 才源, 张卓, 曲静, 夏海丰. 大豆查尔酮还原酶基因CHR1的功能研究[J]. 遗传, 2014, 36(7): 707-712. |
[10] | 谭冰 郭勇 邱丽娟. 大豆全基因组分枝相关基因发掘及与QTL共定位[J]. 遗传, 2013, 35(6): 793-804. |
[11] | 高利芳,郭勇,郝再彬,邱丽娟. 大豆株高QTL的“整合”及Overview分析[J]. 遗传, 2013, 35(2): 215-224. |
[12] | 宋健,郭勇,于丽杰,邱丽娟. 大豆种皮色相关基因研究进展[J]. 遗传, 2012, 34(6): 687-694. |
[13] | 宋冰,王丕武,付永平,范旭红,夏海丰,高玮,洪洋,王贺,张卓,马建. 大豆C2H2型锌指蛋白基因SCTF-1的克隆及功能分析[J]. 遗传, 2012, 34(6): 749-756. |
[14] | 朱丹,柏锡,朱延明,才华,李勇,纪巍,陈超,安琳,朱毅. 野生大豆盐碱胁迫相关GsTIFY11b的克隆与功能分析[J]. 遗传, 2012, 34(2): 230-239. |
[15] | 程浩,金杭霞,盖钧镒,喻德跃. 转基因技术与大豆品质改良[J]. 遗传, 2011, 33(5): 431-436. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: