遗传 ›› 2021, Vol. 43 ›› Issue (3): 215-225.doi: 10.16288/j.yczz.20-332
吕孟冈1,2(), 刘艾嘉1,2, 李庆伟1,2(), 苏鹏1,2()
收稿日期:
2020-11-25
出版日期:
2021-03-16
发布日期:
2021-01-29
基金资助:
Menggang Lv1,2(), Aijia Liu1,2, Qingwei Li1,2(), Peng Su1,2()
Received:
2020-11-25
Online:
2021-03-16
Published:
2021-01-29
Supported by:
摘要:
转录因子是一类能够通过与基因特异性序列进行结合,从而调控基因转录与表达的蛋白质,对细胞的生物学活性具有重要的调节作用。RHR (Rel-homology region, RHR)转录因子家族属于IF (immunoglobulin fold)转录因子超家族最主要的成员,其成员含有保守的Rel结构域和IPT (immunoglobulin-like fold)结构域。作为古老的转录因子家族,RHR家族成员随着物种演化,通过基因的复制、突变和沉默,不断分化出新型同源基因的同时也伴随着基因的丢失。自然选择导致了各家族成员不同的进化速率,并且在一些功能结构域上展现出了特殊的进化机制。然而,目前有关RHR家族起源和分化的综述比较少见。本文综述了RHR家族各成员的分布、分类、功能及家族进化等方面的研究成果,以期为研究整个转录因子家族的演化机制和物种之间的进化关系提供参考和新的思路。
吕孟冈, 刘艾嘉, 李庆伟, 苏鹏. RHR转录因子家族起源、功能以及进化机制的研究进展[J]. 遗传, 2021, 43(3): 215-225.
Menggang Lv, Aijia Liu, Qingwei Li, Peng Su. Progress on the origin, function and evolutionary mechanism of RHR transcription factor family[J]. Hereditas(Beijing), 2021, 43(3): 215-225.
[1] | LambertSA, JolmaA, CampitelliLF, DasPK, YinYM, AlbuM, ChenXT, TaipaleJ, HughesTR, WeirauchMT. The human transcription factors. Cell, 2018, 175(2): 598- 599. |
[2] | WingenderE, SchoepsT, HaubrockM, KrullM, DönitzJ. TFClass: expanding the classification of human transcription factors to their mammalian orthologs. Nucleic Acids Res, 2018, 46( D1): D343-D347. |
[3] | WangJL, WangJ, TianCY. Evolution of KRAB- containing zinc finger proteins and their roles in species evolution. Hereditas(Beijing), 2016, 38(11): 971- 978. |
王进龙, 王建, 田春艳. KRAB型锌指蛋白的进化及在物种演化中的功能. 遗传, 2016, 38(11): 971- 978. | |
[4] | LaityJH, LeeBM, WrightPE. Zinc finger proteins: new insights into structural and functional diversity. Curr Opin Struct Biol, 2001, 11(1): 39- 46. |
[5] | BerisioR, CiccarelliL, SquegliaF, DeSimone A, VitaglianoL. Structural and dynamic properties of incomplete immunoglobulin-like fold domains. Protein Pept Lett, 2012, 19(10): 1045- 1053. |
[6] | SenR, BaltimoreD. Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell, 1986,46(5):705- 716. |
[7] | SuP, FengSS, LiQW. Research progress of the structure and function of NF-κB and IκB in different animal groups. Hereditas(Beijing), 2016, 38(6): 523- 531. |
苏鹏, 冯少姝, 李庆伟. NF-кB和IκB在不同动物类群中的结构及功能研究进展. 遗传, 2016, 38(6): 523- 531. | |
[8] | GhoshS, HaydenMS. New regulators of NF-kappa B in inflammation. Nat Rev Immunol, 2008, 8(11): 837- 848. |
[9] | BortolottoV, CuccurazzuB, CanonicoP L, GrilliM. NF-κB mediated regulation of adult hippocampal neurogenesis: relevance to mood disorders and antidepressant activity. Biomed Res Int, 2014,612798. |
[10] | Al-KhodorS, PriceCT, KaliaA, Abu Kwaik Y. Functional diversity of ankyrin repeats in microbial proteins. Trends Microbiol, 2010,18(3):132- 139. |
[11] | GauthierM, DegnanBM. The transcription factor NF- kappaB in the demosponge Amphimedon queenslandica : insights on the evolutionary origin of the Rel homology domain . Dev Genes Evol, 2008, 218(1): 23- 32. |
[12] | ZhangQ, LenardoMJ, BaltimoreD. 30 years of NF-κB: a blossoming of relevance to human pathobiology. Cell, 2017, 168( 1- 2): 37- 57. |
[13] | GhoshS, MayMJ, KoppEB. NF-kappaB and Rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol, 1998,16:225- 260. |
[14] | WangTT, SunYX, JinLJ, ThackerP, LiSY, XuYP. Aj-rel and Aj-p105, two evolutionary conserved NF-κB homologues in sea cucumber (Apostichopus japonicus) and their involvement in LPS induced immunity . Fish Shellfish Immunol, 2013, 34(1): 17- 22. |
[15] | SullivanJC, WolenskiFS, ReitzelAM, FrenchCE, Traylor-KnowlesN, GilmoreTD, FinnertyJR. Two alleles of NF-kappaB in the sea anemone Nematostella vectensis are widely dispersed in nature and encode proteins with distinct activities . PLoS One, 2009, 4(10): e7311. |
[16] | HuguetC, CrepieuxP, LaudetV. Rel/NF-kappaB transcription factors and IkappaB inhibitors: evolution from a unique common ancestor. Oncogene, 1997,15(24):2965- 2974. |
[17] | SiggersT, ChangAB, TeixeiraA, WongD, WilliamsKJ, AhmedB, RagoussisJ, UdalovaIA, SmaleST, BulykML. Principles of dimer-specific gene regulation revealed by a comprehensive characterization of NF-κB family DNA binding. Nat Immunol, 2011, 13(1): 95- 102. |
[18] | DeJuan D, PazosF, ValenciaA. Emerging methods in protein co-evolution. Nat Rev Genet, 2013,14(4):249- 261. |
[19] | MengX, KhanujaBS, IpYT. Toll receptor-mediated Drosophila immune response requires Dif, an NF-kappaB factor . Genes Dev, 1999, 13(7): 792- 797. |
[20] | GilmoreTD, WolenskiFS. NF-κB: where did it come from and why? Immunol Rev, 2012, 246(1): 14- 35. |
[21] | WoodsIG, WilsonC, FriedlanderB, ChangP, ReyesDK, NixR, KellyPD, ChuF, PostlethwaitJH, TalbotWS. The zebrafish gene map defines ancestral vertebrate chromosomes . Genome Res, 2005,15(9):1307- 1314. |
[22] | KabacaogluD, RuessDA, AiJ, AlgülH. NF-κB/Rel transcription factors in pancreatic cancer: focusing on RelA, c-Rel, and RelB. Cancers (Basel), 2019, 11( 7): 937. |
[23] | MilletP, McCallC, YozaB. RelB: an oultlier in leukocyte biology. J Leukoc Biol, 2013,94(5):941- 951. |
[24] | IrazoquiJE, UrbachJM, AusubelFM. Evolution of host innate defence: insights from Caenorhabditis elegans and primitive invertebrates . Nat Rev Immunol, 2010, 10(1): 47- 58. |
[25] | KuoCJ, HansenM, TroemelE. Autophagy and innate immunity: insights from invertebrate model organisms. Autophagy, 2018, 14(2): 233- 242. |
[26] | LiJ, MahajanA, TsaiMD. Ankyrin repeat: a unique motif mediating protein-protein interactions. Biochemistry, 2006, 45(51): 15168- 15178. |
[27] | Sebé-PedrósA, deMendoza A, LangBF, DegnanBM, Ruiz-TrilloI. Unexpected repertoire of metazoan transcription factors in the unicellular holozoan Capsaspora owczarzaki. Mol Biol Evol, 2011,28(3):1241- 1254. |
[28] | WolenskiFS, GarbatiMR, LubinskiTJ, Traylor-KnowlesN, DresselhausE, StefanikDJ, GoucherH, FinnertyJR, GilmoreTD. Characterization of the core elements of the NF-κB signaling pathway of the sea anemone Nematostella vectensis. Mol Cell Biol, 2011,31(5):1076- 1087. |
[29] | ShawJP, UtzPJ, DurandDB, TooleJJ, EmmelEA, CrabtreeGR. Identification of a putative regulator of early T cell activation genes. Science, 1988, 241(4862): 202- 205. |
[30] | HoganPG. Calcium-NFAT transcriptional signalling in T cell activation and T cell exhaustion. Cell Calcium, 2017,63:66- 69. |
[31] | MüllerMR, RaoA. NFAT, immunity and cancer: a transcription factor comes of age. Nat Rev Immunol, 2010,10(9):645- 656. |
[32] | LeeJU, KimLK, ChoiJM. Revisiting the concept of targeting NFAT to control T cell immunity and autoimmune diseases. Front Immunol, 2018,9:2747. |
[33] | MacianF. NFAT proteins: key regulators of T-cell development and function. Nat Rev Immunol, 2005,5(6):472- 484. |
[34] | HoganPG, ChenL, NardoneJ, RaoA. Transcriptional regulation by calcium, calcineurin, and NFAT. Genes Dev, 2003,17(18):2205- 2232. |
[35] | FeskeS, OkamuraH, HoganPG, RaoA. Ca 2+/calcineurin signalling in cells of the immune system . Biochem Biophys Res Commun, 2003,311(4):1117- 1132. |
[36] | AramburuJ, López-RodríguezC. Regulation of inflammatory functions of macrophages and T lymphocytes by NFAT5. Front Immunol, 2019,10:535. |
[37] | SullivanJC, KalaitzidisD, GilmoreTD, FinnertyJR. Rel homology domain-containing transcription factors in the cnidarian Nematostella vectensis. Dev Genes Evol, 2007, 217(1): 63- 72. |
[38] | VenkateshB, LeeAP, RaviV, MauryaAK, LianMM, SwannJB, OhtaY, FlajnikMF, SutohY, KasaharaM, HoonS, GanguV, RoySW, IrimiaM, KorzhV, KondrychynI, LimZW, TayBH, TohariS, KongKW, HoS, Lorente-GaldosB, QuilezJ, Marques-BonetT, RaneyBJ, InghamPW, TayA, HillierLW, MinxP, BoehmT, WilsonRK, BrennerS, WarrenWC. Author correction: elephant shark genome provides unique insights into gnathostome evolution . Nature, 2014, 505(7482): 174- 179. |
[39] | KasaharaM, NaruseK, SasakiS, NakataniY, QuW, AhsanB, YamadaT, NagayasuY, DoiK, KasaiY, JindoT, KobayashiD, ShimadaA, ToyodaA, KurokiY, FujiyamaA, SasakiT, ShimizuA, AsakawaS, ShimizuN, HashimotoS, YangJ, LeeY, MatsushimaK, SuganoS, SakaizumiM, NaritaT, OhishiK, HagaS, OhtaF, NomotoH, NogataK, MorishitaT, EndoT, Shin-IT, TakedaH, MorishitaS, KoharaY. The medaka draft genome and insights into vertebrate genome evolution . Nature, 2007,447(7145):714- 719. |
[40] | LiW, ZhengNZ, YuanQ, XuK, YangF, GuL, ZhengGY, LuoGJ, FanC, JiGJ, ZhangB, CaoH, TianXL. Erratum to: NFAT5-mediated CACNA1C expression is critical for cardiac electrophysiological development and maturation. J Mol Med (Berl), 2016,94(9):1003- 1004. |
[41] | HuangXD, WeiGJ, ZhangH, HeMX. Nuclear factor of activated T cells (NFAT) in pearl oyster pinctada fucata : molecular cloning and functional characterization . Fish Shellfish Immunol, 2015, 42(1): 108- 113. |
[42] | SongX, HuJ, JinP, ChenL, MaF. Identification and evolution of an NFAT gene involving Branchiostoma belcheri innate immunity . Genomics, 2013,102(4):355- 362. |
[43] | KaiW, KikuchiK, TohariS, ChewAK, TayA, FujiwaraA, HosoyaS, SuetakeH, NaruseK, BrennerS, SuzukiY, VenkateshB. Integration of the genetic map and genome assembly of fugu facilitates insights into distinct features of genome evolution in teleosts and mammals. Genome Biol Evol, 2011,3:424- 442. |
[44] | SessionAM, UnoY, KwonT, ChapmanJA, ToyodaA, TakahashiS, FukuiA, HikosakaA, SuzukiA, KondoM, vanHeeringen SJ, QuigleyI, HeinzS, OginoH, OchiH, HellstenU, LyonsJB, SimakovO, PutnamN, StitesJ, KurokiY, TanakaT, MichiueT, WatanabeM, BogdanovicO, ListerR, GeorgiouG, ParanjpeSS, vanKruijsbergen I, ShuS, CarlsonJ, KinoshitaT, OhtaY, MawaribuchiS, JenkinsJ, GrimwoodJ, SchmutzJ, MitrosT, MozaffariSV, SuzukiY, HaramotoY, YamamotoTS, TakagiC, HealdR, MillerK, HaudenschildC, KitzmanJ, NakayamaT, IzutsuY, RobertJ, FortriedeJ, BurnsK, LotayV, KarimiK, YasuokaY, DichmannDS, FlajnikMF, HoustonDW, ShendureJ, DuPasquierL, VizePD, ZornAM, ItoM, MarcotteEM, WallingfordJB, ItoY, AsashimaM, UenoN, MatsudaY, VeenstraGJ, FujiyamaA, HarlandRM, TairaM, RokhsarDS. Genome evolution in the allotetraploid frog Xenopus laevis. Nature, 2016,538(7625):336- 343. |
[45] | VihmaH, PruunsildP, TimmuskT. Alternative splicing and expression of human and mouse NFAT genes. Genomics, 2008,92(5):279- 291. |
[46] | VechettiIJ Jr, AguiarAF, deSouza RW, AlmeidaFL, deAlmeida Dias HB, deAguiar Silva MA, CaraniFR, FerraressoRL, CarvalhoRF, Dal-Pai-SilvaM. NFAT isoforms regulate muscle fiber type transition without altering CaN during aerobic training. Int J Sports Med, 2013, 34(10): 861- 867. |
[47] | UenoM, ShenWJ, PatelS, GreenbergAS, AzharS, KraemerFB. Fat-specific protein 27 modulates nuclear factor of activated T cells 5 and the cellular response to stress. J Lipid Res, 2013, 54(3):734- 743. |
[48] | GraefIA, GastierJM, FranckeU, CrabtreeGR. Evolutionary relationships among Rel domains indicate functional diversification by recombination. Proc Natl Acad Sci USA, 2001, 98(10): 5740- 5745. |
[49] | International Chicken Genome Sequencing Consortium. Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature, 2004,432(7018):695- 716. |
[50] | DalloulRA, LongJA, ZiminAV, AslamL, BealK, BlombergLe Ann, BouffardP, BurtDW, CrastaO, CrooijmansRP, CooperK, CoulombeRA, DeS, DelanyME, DodgsonJB, DongJJ, EvansC, FredericksonKM, FlicekP, FloreaL, FolkertsO, GroenenMA, HarkinsTT, HerreroJ, HoffmannS, MegensHJ, JiangA, deJong P, KaiserP, KimH, KimKW, KimS, LangenbergerD, LeeMK, LeeT, ManeS, MarcaisG, MarzM, McElroyAP, ModiseT, NefedovM, NotredameC, PatonIR, PayneWS, PerteaG, PrickettD, PuiuD, QioaD, RaineriE, RuffierM, SalzbergSL, SchatzMC, ScheuringC, SchmidtCJ, SchroederS, SearleSM, SmithEJ, SmithJ, SonstegardTS, StadlerPF, TaferH, TuZJ, VanTassell CP, VilellaAJ, WilliamsKP, YorkeJA, ZhangL, ZhangHB, ZhangX, ZhangY, ReedKM. Multi-platform next-generation sequencing of the domestic turkey ( Meleagris gallopavo ): genome assembly and analysis . PLoS Biol, 2010,8(9): e1000475. |
[51] | LeeN, KimD, KimWU. Role of NFAT5 in the immune system and pathogenesis of autoimmune diseases. Front Immunol, 2019,10: 270. |
[52] | MeyerA, Van de Peer Y. From 2R to 3R: evidence for a fish-specific genome duplication (FSGD). Bioessays, 2005,27(9):937- 945. |
[53] | HoeggS, MeyerA. Hox clusters as models for vertebrate genome evolution. Trends Genet, 2005,21(8):421- 424. |
[54] | HagmanJ, BelangerC, TravisA, TurckCW, GrosschedlR. Cloning and functional characterization of early B-cell factor, a regulator of lymphocyte-specific gene expression. Genes Dev, 1993,7(5):760- 773. |
[55] | deTaffin M, CarrierY, DuboisL, BatailléL, PainsetA, LeGras S, JostB, CrozatierM, VincentA. Genome-wide mapping of collier in vivo binding sites highlights its hierarchical position in different transcription regulatory networks . PLoS One, 2015, 10( 7): e0133387. |
[56] | WangMM, ReedRR. Molecular cloning of the olfactory neuronal transcription factor Olf-1 by genetic selection in yeast. Nature, 1993, 364(6433):121- 126. |
[57] | LiaoD. Emerging roles of the EBF family of transcription factors in tumor suppression. Mol Cancer Res, 2009, 7(12): 1893- 1901. |
[58] | FieldsS, TernyakK, GaoH, OstraatR, AkerlundJ, HagmanJ. The 'zinc knuckle' motif of early B cell factor is required for transcriptional activation of B cell-specific genes. Mol Immunol, 2008,45(14):3786- 3796. |
[59] | SiponenMI, WisniewskaM, LehtiöL, JohanssonI, SvenssonL, RaszewskiG, NilssonL, SigvardssonM, BerglundH. Structural determination of functional domains in early B-cell factor (EBF) family of transcription factors reveals similarities to Rel DNA-binding proteins and a novel dimerization motif. J Biol Chem, 2010,285(34):25875- 25879. |
[60] | PangK, MatusDQ, MartindaleMQ. The ancestral role of COE genes may have been in chemoreception: evidence from the development of the sea anemone, Nematostella vectensis (Phylum Cnidaria; Class Anthozoa). Dev Genes Evol, 2004, 214(3): 134- 138. |
[61] | StolfiA, GainousTB, YoungJJ, MoriA, LevineM, ChristiaenL. Early chordate origins of the vertebrate second heart field. Science, 2010, 329(5991): 565- 568. |
[62] | KimK, ColosimoME, YeungH, SenguptaP. The UNC-3 Olf/EBF protein represses alternate neuronal programs to specify chemosensory neuron identity. Dev Biol, 2005, 286( 1): 136- 148. |
[63] | MazetF, MasoodS, LukeGN, HollandND, ShimeldSM. Expression of AmphiCoe, an amphioxus COE/EBF gene, in the developing central nervous system and epidermal sensory neurons . Genesis, 2004, 38(2): 58- 65. |
[64] | Lara-RamírezR, PonceletG, PattheyC, ShimeldSM. splicingsplicing, The structure, synteny and expression of lamprey COE genes and the evolution of the COE gene family in chordates . Dev Genes Evol, 2017,227(5):319- 338. |
[65] | WangY, ChenK, YaoQ, ZhengX, YangZ. Phylogenetic analysis of zebrafish basic helix-loop-helix transcription factors . J Mol Evol, 2009,68(6):629- 640. |
[66] | PozzoliO, BosettiA, CrociL, ConsalezGG, VetterML. Xebf3 is a regulator of neuronal differentiation during primary neurogenesis in Xenopus. Dev Biol, 2001, 233( 2): 495- 512. |
[67] | CatelaC, CorreaE, WenK, AburasJ, CrociL, ConsalezGG, KratsiosP. An ancient role for collier/Olf/Ebf (COE)-type transcription factors in axial motor neuron development. Neural Dev, 2019, 14( 1): 2. |
[68] | TreiberN, TreiberT, ZocherG, GrosschedlR. Structure of an EBF1:DNA complex reveals unusual DNA recognition and structural homology with Rel proteins. Genes Dev, 2010, 24(20): 2270- 2275. |
[69] | BollerS, GrosschedlR. The regulatory network of B-cell differentiation: a focused view of early B-cell factor 1 function. Immunol Rev, 2014, 261( 1): 102- 115. |
[70] | DaburonV, MellaS, PlouhinecJL, MazanS, CrozatierM, VincentA. The metazoan history of the COE transcription factors. Selection of a variant HLH motif by mandatory inclusion of a duplicated exon in vertebrates. BMC Evol Biol, 2008,8:131. |
[71] | PursgloveSE, MackayJP. CSL: a notch above the rest. Int J Biochem Cell Biol, 2005, 37(12): 2472- 2477. |
[72] | MaierD. The evolution of transcriptional repressors in the notch signaling pathway: a computational analysis. Hereditas, 2019, 156( 1): 5. |
[73] | SiegerD, TautzD, GajewskiM. The role of suppressor of hairless in notch mediated signalling during zebrafish somitogenesis . Mech Dev, 2003,120(9):1083- 1094. |
[74] | ItoM, KatadaT, MiyataniS, KinoshitaT. XSu(H)2 is an essential factor for gene expression and morphogenesis of the Xenopus gastrula embryo . Int J Dev Biol, 2007, 51( 1): 27- 36. |
[75] | ToritsukaM, KimotoS, MurakiK, KitagawaM, KishimotoT, SawaA, TanigakiK. Regulation of striatal dopamine responsiveness by Notch/RBP-J signaling. Transl Psychiatry, 2017,7(3): e1049. |
[76] | PrevorovskýM, PůtaF, FolkP. Fungal CSL transcription factors. BMC Genomics, 2007,8:233. |
[77] | WilsonJJ, KovallRA. Crystal structure of the CSL-notch- mastermind ternary complex bound to DNA. Cell, 2006,124(5):985- 996. |
[78] | HallDP, KovallRA. Structurally conserved binding motifs of transcriptional regulators to notch nuclear effector CSL. Exp Biol Med ( Maywood ), 2019, 244(17): 1520- 1529. |
[79] | OakleyF, MannJ, RuddellRG, PickfordJ, WeinmasterG, MannDA. Basal expression of IkappaBalpha is controlled by the mammalian transcriptional repressor RBP-J (CBF1) and its activator notch1. J Biol Chem, 2003, 278(27): 24359- 24370. |
[80] | CollinsKJ, YuanZ, KovallRA. Structure and function of the CSL-KyoT2 corepressor complex: a negative regulator of notch signaling. Structure, 2014, 22( 1): 70- 81. |
[81] | HedgesSB. The origin and evolution of model organisms. Nat Rev Genet, 2002, 3(11): 838- 849. |
[82] | CiccarelliFD, DoerksT, vonMering C, CreeveyCJ, SnelB, BorkP. Toward automatic reconstruction of a highly resolved tree of life. Science, 2006,311(5765):1283- 1287. |
[83] | BeresTM, MasuiT, SwiftGH, ShiL, HenkeRM, MacDonaldRJ. PTF1 is an organ-specific and notch- independent basic helix-loop-helix complex containing the mammalian suppressor of hairless (RBP-J) or its paralogue, RBP-L. Mol Cell Biol, 2006, 26( 1): 117- 130. |
[84] | MinoguchiS, TaniguchiY, KatoH, OkazakiT, StroblLJ, Zimber-StroblU, BornkammGW, HonjoT. RBP-L, a transcription factor related to RBP-Jkappa. Mol Cell Biol, 1997,17(5):2679- 2687. |
[1] | 孙凤宇, 许强华. 血液发生相关microRNAs研究进展[J]. 遗传, 2022, 44(9): 756-771. |
[2] | 慕蓉蓉, 牛晴晴, 孙玉强, 梅俊, 苗蒙. 陆地棉MYB类转录因子基因GhTT2克隆及功能初步分析[J]. 遗传, 2022, 44(8): 720-728. |
[3] | 姜明亮, 郎红, 李晓楠, 祖野, 赵靖, 彭沈凌, 刘振, 战宗祥, 朴钟云. 植物孤基因研究进展[J]. 遗传, 2022, 44(8): 682-694. |
[4] | 巴恒星, 胡鹏飞, 李春义. 鹿科动物基因组学研究进展[J]. 遗传, 2021, 43(4): 308-322. |
[5] | 章誉兴, 吴宏, 于黎. 哺乳动物毛色调控机制及其适应性进化研究进展[J]. 遗传, 2021, 43(2): 118-133. |
[6] | 罗鑫, 宿兵. 三维基因组分析点亮人类大脑进化之谜[J]. 遗传, 2021, 43(2): 105-107. |
[7] | 邱晓芬, 汤冬娥, 虞海燕, 廖秋燕, 胡芷洋, 周俊, 赵鑫, 何慧燕, 梁灼健, 许承明, 杨明, 戴勇. 基于单细胞ATAC测序技术对18-三体综合征染色质开放性区域转录因子的分析[J]. 遗传, 2021, 43(1): 74-83. |
[8] | 朱医高, 李军, 逄越, 李庆伟. 七鳃鳗:生物进化和疾病研究的重要模式动物[J]. 遗传, 2020, 42(9): 847-857. |
[9] | 妥晓梅, 朱东丽, 陈晓峰, 荣誉, 郭燕, 杨铁林. 骨质疏松易感SNP rs4325274通过增强子远程调控SOX6基因的功能机制研究[J]. 遗传, 2020, 42(9): 889-897. |
[10] | 吴杰, 全建平, 叶勇, 吴珍芳, 杨杰, 杨明, 郑恩琴. 染色质转座酶可及性测序研究进展[J]. 遗传, 2020, 42(4): 333-346. |
[11] | 胡风越, 王克剑. STEME系统:一种助力体内定向进化的新工具[J]. 遗传, 2020, 42(3): 231-235. |
[12] | 唐连超, 谷峰. CRISPR-Cas基因编辑系统升级:聚焦Cas蛋白和PAM[J]. 遗传, 2020, 42(3): 236-249. |
[13] | 梅志超, 位竹君, 于佳慧, 冀凤丹, 解莉楠. 多组学关联分析揭示表观等位基因在拟南芥环境适应性进化中的作用及机制[J]. 遗传, 2020, 42(3): 321-331. |
[14] | 王涛涛, 杨勇, 魏唯, 林辰涛, 马留银. 互花米草NAC转录因子家族的鉴定与表达分析[J]. 遗传, 2020, 42(2): 194-211. |
[15] | 彭威, 冯蒙洁, 陈皓, 韩宝瑜. 双翅目昆虫基因组研究进展[J]. 遗传, 2020, 42(11): 1093-1109. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: