遗传 ›› 2020, Vol. 42 ›› Issue (3): 236-249.doi: 10.16288/j.yczz.19-297
收稿日期:
2019-11-12
修回日期:
2020-02-26
出版日期:
2020-03-20
发布日期:
2020-03-04
通讯作者:
谷峰
E-mail:fgu@mail.eye.ac.cn
作者简介:
唐连超,硕士研究生,专业方向:基因编辑工具优化及应用。E-mail: 基金资助:
Received:
2019-11-12
Revised:
2020-02-26
Online:
2020-03-20
Published:
2020-03-04
Contact:
Gu Feng
E-mail:fgu@mail.eye.ac.cn
Supported by:
摘要:
以CRISPR-Cas (clustered regularly interspaced short palindromic repeats and CRISPR associated proteins)系统为代表的基因编辑技术的出现极大地促进了人类改造自然界物种的能力。在医疗、工业、农业等多个研究领域,基因编辑技术正在被广泛应用。Cas蛋白是CRISPR-Cas系统的功能蛋白,不同类型的Cas蛋白在其自身活性、识别位点、切割末端、RNA需求等方面具有不同的特性。PAM (protospacer adjacent motif)是靶位点附近的若干个碱基,对Cas蛋白识别靶序列至关重要,也是CRISPR-Cas系统发挥功效的关键特性之一。目前已有多种不同的PAM鉴定方法被报道。本文对Cas蛋白的寻找、Cas蛋白突变体筛选及PAM的确定方法(含PAM谱拓展)进行了综述,以期为新型基因编辑工具的发展和优化提供借鉴。
唐连超, 谷峰. CRISPR-Cas基因编辑系统升级:聚焦Cas蛋白和PAM[J]. 遗传, 2020, 42(3): 236-249.
Lianchao Tang, Feng Gu. Next-generation CRISPR-Cas for genome editing: focusing on the Cas protein and PAM[J]. Hereditas(Beijing), 2020, 42(3): 236-249.
表1
不同Cas蛋白寻找方法与比较"
方法 | 特点 | 劣势 | Cas蛋白 | 文献 |
---|---|---|---|---|
生物信息学分析 | 一次能够发现大量结构 相似或者功能类似的蛋白; 不需要进行分子实验 | 需要已知的序列信息 | SpCas9 | [16] |
SaCas9 | [25] | |||
Cpf1 | [11] | |||
FnCas9 | [59] | |||
NmCas9 | [60] | |||
CjCas9 | [61] | |||
St1Cas9 | [40] | |||
St3Cas9 | [40] | |||
基于质粒干扰的 耗尽筛选 | 实验思路简单,将PAM识别与 细菌的死亡相偶联 | 通过盒式诱变制作Cas蛋白突变库, 工作量较大; 需要进行第二代测序 | AsCpf1 RR | [33] |
AsCpf1 RVR | [33] | |||
细菌选择性 定向进化 | 将PAM识别与细菌的生存相偶联 | 需制作Cas蛋白突变库; 毒性质粒表达需要诱导,容易出现假阳性; 操作相对复杂 | SpCas9 VQR | [34] |
SpCas9 EQR | [34] | |||
SpCas9 VRER | [34] | |||
噬菌体辅助 连续进化 | 可以同时进行突变和筛选 | 筛选过程只利用了Cas蛋白的结合能力, 所以筛选出的Cas蛋白更适合作为一种 无切割活性的dCas蛋白 | xCas9 3.7 | [37] |
晶体结构为基 础的定点突变 | 结合晶体结构信息进行直接突变; 无需制备大量突变体 | 需要获得晶体结构; 突变位点选择不易 | FnCas9 RHA | [62] |
SaCas9 KKH | [29] | |||
SpCas9-NG | [38] |
表2
不同Cas蛋白PAM确定方法与比较"
方法 | 切割环境 | 筛选方向 | 特点 | Cas蛋白 | PAM | 文献 |
---|---|---|---|---|---|---|
生物信息学 分析 | 无 | 正向 | 原始信息来自于基因组中spacer,结果可靠; 需要已知的spacer; 无法确保spacer来源的正确性; 获得的PAM信息可能不全面 | SpCas9 | NGG | [ |
St1Cas9 | NNAGAAW | [ | ||||
St3Cas9 | NGGNG | [ | ||||
NmCas9 | NNNNGATT | [ | ||||
体内切割反应 (PAM 质粒库) | 细菌 | 反向 | 该方法的PAM覆盖度高; 需要制备深度覆盖的质粒库; 需要构建Cas蛋白稳定表达的宿主; PAM逃逸受靶序列突变或DNA修复影响 | SpCas9 | NGG | [ |
SpCas9 VQR | NGA | [ | ||||
SpCas9 EQR | NGAG | [ | ||||
SpCas9 VRER | NGCG | [ | ||||
SaCas9 | NNGRRT | [ | ||||
SaCas9 KKH | NNNRRT | [ | ||||
CasX | TTCN | [ | ||||
CasY.1 | TA | [ | ||||
St1Cas9 | NNRGRA | [ | ||||
NmCas9 | NNNNGNNT | [ | ||||
体内切割反应 (crRNA 质粒库) | 细菌 | 正向 | 提供了一种正向的筛选方式; 噬菌体基因组中展现出来的PAM有限; 构建向导RNA库的费用高于PAM库 | FnCpf1 | TTN | [ |
体外切割反应 | 体外 | 正向或反向 | 被切割模板量大,可以覆盖更多的潜在 PAM,快速; 需要纯化蛋白、靶向模板容易降解、体外 条件可能导致PAM结果产生差异 | SpCas9 | NGG | [ |
SpCas9-NG | NG | [ | ||||
SaCas9 | NNGRRT | [ | ||||
FnCas9 | NGG | [ | ||||
FnCas9 RHA | YG | [ | ||||
CjCas9 | NNNVRYM | [ | ||||
St1Cas9 | NNRRRA | [ | ||||
NNAGAAW | [ | |||||
St3Cas9 | NGGNG | [ | ||||
PAM-SCANR | 细菌 | 正向 | 是一种正向筛选; 采用dCas蛋白,结果可能与以切割为 基础分析获得的PAM有差异; 筛选可能会受到阻遏效应波动影响; 操作相对复杂 | SpCas9 | NGG | [ |
St1Cas9 | NNAGAA | [ | ||||
PAM-DOSE | 人类细胞 | 正向 | 能够直接在人类细胞中进行Cas蛋白 PAM的确定; 采用正向筛选方式,不用制作大容量的 PAM库; 筛选方法依赖NHEJ修复 | SpCas9 | NGG | [ |
SpCas9-NG | NG | [ | ||||
FnCpf1 | YYN | [ | ||||
LbCpf1 | YYN | [ | ||||
AsCpf1 | YYN | [ | ||||
MbCpf1 | YYN | [ |
[1] | Bak RO, Gomez-Ospina N, Porteus MH . Gene editing on center stage. Trends Genet, 2018,34(8):600-611. |
[2] | Zhang F, Wen Y, Guo X . CRISPR/Cas9 for genome editing: progress, implications and challenges. Hum Mol Genet, 2014,23(R1):R40-R46. |
[3] | Abudayyeh OO, Gootenberg JS, Konermann S, Joung J, Slaymaker IM, Cox DB, Shmakov S, Makarova KS, Semenova E, Minakhin L, Severinov K, Regev A, Lander ES, Koonin EV, Zhang F. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science, 2016, 353(6299): aaf5573. |
[4] | Gootenberg JS, Abudayyeh OO, Lee JW, Essletzbichler P, Dy AJ, Joung J, Verdine V, Donghia N, Daringer NM, Freije CA, Myhrvold C, Bhattacharyya RP, Livny J, Regev A, Koonin EV, Hung DT, Sabeti PC, Collins JJ, Zhang F . Nucleic acid detection with CRISPR-Cas13a/C2c2. Science, 2017,356(6336):438-442. |
[5] | Gootenberg JS, Abudayyeh OO, Kellner MJ, Joung J, Collins JJ, Zhang F . Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science, 2018,360(6387):439-444. |
[6] | Konermann S, Brigham MD, Trevino AE, Joung J, Abudayyeh OO, Barcena C, Hsu PD, Habib N, Gootenberg JS, Nishimasu H, Nureki O, Zhang F . Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature, 2015,517(7536):583-588. |
[7] | Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR . Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature, 2016,533(7603):420-424. |
[8] | Nishida K, Arazoe T, Yachie N, Banno S, Kakimoto M, Tabata M, Mochizuki M, Miyabe A, Araki M, Hara KY, Shimatani Z, Kondo A. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science, 2016, 353(6305): aaf8729. |
[9] | Zong Y, Gao CX . Progress on base editing systems. Hereditas(Beijing), 2019,41(9):777-800. |
宗媛, 高彩霞 . 碱基编辑系统研究进展. 遗传, 2019,41(9):777-800. | |
[10] | Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, Chen PJ, Wilson C, Newby GA, Raguram A, Liu DR . Search-and-replace genome editing without double-strand breaks or donor DNA. Nature, 2019,576(7785):149-157. |
[11] | Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P . CRISPR provides acquired resistance against viruses in prokaryotes. Science, 2007,315(5819):1709-1712. |
[12] | Doudna JA, Charpentier E . Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science, 2014,346(6213):1258096. |
[13] | Hsu PD, Lander ES, Zhang F . Development and applications of CRISPR-Cas9 for genome engineering. Cell, 2014,157(6):1262-1278. |
[14] | Van Der Oost J, Westra ER, Jackson RN, Wiedenheft B . Unravelling the structural and mechanistic basis of CRISPR-Cas systems. Nat Rev Microbiol, 2014,12(7):479-492. |
[15] | Barrangou R, Doudna JA . Applications of CRISPR technologies in research and beyond. Nat Biotechnol, 2016,34(9):933-941. |
[16] | Jansen R, Embden JD, Gaastra W, Schouls LM . Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol, 2002,43(6):1565-1575. |
[17] | Mojica FJ, Diez-Villasenor C, Garcia-Martinez J, Soria E . Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol, 2005,60(2):174-182. |
[18] | Shah SA, Erdmann S, Mojica FJ, Garrett RA . Protospacer recognition motifs: mixed identities and functional diversity. RNA Biol, 2013,10(5):891-899. |
[19] | Westra ER, Semenova E, Datsenko KA, Jackson RN, Wiedenheft B, Severinov K, Brouns SJ . Type I-E CRISPR-cas systems discriminate target from non-target DNA through base pairing-independent PAM recognition. PLoS Genet, 2013,9(9):e1003742. |
[20] | Marraffini LA, Sontheimer EJ . Self versus non-self discrimination during CRISPR RNA-directed immunity. Nature, 2010,463(7280):568-571. |
[21] | Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E . A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012,337(6096):816-821. |
[22] | Mali P, Yang L, Esvelt KM, Aach J, Guell M, Dicarlo JE, Norville JE, Church GM . RNA-guided human genome engineering via Cas9. Science, 2013,339(6121):823-826. |
[23] | Cong L, Ran FA, Cox D, Lin SL, Barretto R, Habib N, Hsu PD, Wu XB, Jiang WY, Marraffini LA, Zhang F . Multiplex genome engineering using CRISPR/Cas systems. Science, 2013,339(6121):819-823. |
[24] | Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F . Genome engineering using the CRISPR-Cas9 system. Nat Protoc, 2013,8(11):2281-2308. |
[25] | Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, Kriz AJ, Zetsche B, Shalem O, Wu X, Makarova KS, Koonin EV, Sharp PA, Zhang F . In vivo genome editing using Staphylococcus aureus Cas9. Nature, 2015,520(7546):186-191. |
[26] | Gu F . The new “dark horse” of genome editing tool: FnCpf1 has effective genome editing activity in human cells. Hereditas(Beijing), 2017,39(10):947-949. |
谷峰 . 基因组编辑工具新晋“黑马”:FnCpf1在人类细胞内具备有效基因组编辑活性. 遗传, 2017,39(10):947-949. | |
[27] | He XB, Gu F . Genome-editing: focus on the off-target effects. Chin J Biotechnol, 2017,33(10):1757-1775. |
何秀斌, 谷峰 . 基因组编辑脱靶研究进展. 生物工程学报, 2017,33(10):1757-1775. | |
[28] | Schunder E, Rydzewski K, Grunow R, Heuner K . First indication for a functional CRISPR/Cas system in Francisella tularensis. Int J Med Microbiol, 2013,303(2):51-60. |
[29] | Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, Van Der Oost J, Regev A, Koonin EV, Zhang F,. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell, 2015,163(3):759-771. |
[30] | Shmakov S, Abudayyeh OO, Makarova KS, Wolf YI, Gootenberg JS, Semenova E, Minakhin L, Joung J, Konermann S, Severinov K, Zhang F, Koonin EV . Discovery and functional characterization of diverse class 2 CRISPR-Cas systems. Mol Cell, 2015,60(3):385-397. |
[31] | Burstein D, Harrington LB, Strutt SC, Probst AJ, Anantharaman K, Thomas BC, Doudna JA, Banfield JF . New CRISPR-Cas systems from uncultivated microbes. Nature, 2016,542(7640):237-241. |
[32] | Liu JJ, Orlova N, Oakes BL, Ma E, Spinner HB, Baney KLM, Chuck J, Tan D, Knott GJ, Harrington LB, Al-Shayeb B, Wagner A, Brötzmann J, Staahl BT, Taylor KL, Desmarais J, Nogales E, Doudna JA . CasX enzymes comprise a distinct family of RNA-guided genome editors. Nature, 2019,566(7743):218-223. |
[33] | Gao L, Cox D, Yan WX, Manteiga JC, Schneider MW, Yamano T, Nishimasu H, Nureki O, Crosetto N, Zhang F . Engineered Cpf1 variants with altered PAM specificities. Nate Biotechnol, 2017,35(8):789-792. |
[34] | Kleinstiver BP, Prew MS, Tsai SQ, Topkar VV, Nguyen NT, Zheng Z, Gonzales AP, Li Z, Peterson RT, Yeh JR, Aryee MJ, Joung JK . Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature, 2015,523(7561):481-485. |
[35] | Chen ZL, Zhao HM . A highly sensitive selection method for directed evolution of homing endonucleases. Nucleic Acids Res, 2005,33(18):e154. |
[36] | Esvelt KM, Carlson JC, Liu DR . A system for the continuous directed evolution of biomolecules. Nature, 2011,472(7344):499-503. |
[37] | Hu JH, Miller SM, Geurts MH, Tang WX, Chen LW, Sun N, Zeina CM, Gao X, Rees HA, Lin Z, Liu DR . Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature, 2018,556(7699):57-63. |
[38] | Nishimasu H, Shi X, Ishiguro S, Gao L, Hirano S, Okazaki S, Noda T, Abudayyeh OO, Gootenberg JS, Mori H, Oura S, Holmes B, Tanaka M, Seki M, Hirano H, Aburatani H, Ishitani R, Ikawa M, Yachie N, Zhang F, Nureki O . Engineered CRISPR-Cas9 nuclease with expanded targeting space. Science, 2018,361(6408):1259-1262. |
[39] | He X, Wang Y, Yang F, Wang B, Xie H, Gu L, Zhao T, Liu X, Zhang D, Ren Q, Liu X, Liu Y, Gao C, Gu F . Boosting activity of high-fidelity CRISPR/Cas9 variants using a tRNA Gln-processing system in human cells . J Biol Chem, 2019,294(23):9308-9315. |
[40] | Horvath P, Romero DA, Coute-Monvoisin AC, Richards M, Deveau H, Moineau S, Boyaval P, Fremaux C, Barrangou R . Diversity, activity, and evolution of CRISPR loci in streptococcus thermophilus. J Bacteriol, 2008,190(4):1401-1412. |
[41] | Deveau H, Barrangou R, Garneau JE, Labonte J, Fremaux C, Boyaval P, Romero DA, Horvath P, Moineau S . Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J Bacteriol, 2008,190(4):1390-1400. |
[42] | Mojica FJ, Diez-Villasenor C, García-Martinez J, Almendros C . Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology, 2009,155(Pt 3):733-740. |
[43] | Wiedenheft B, Van DE, Bultema JB, Waghmare SP, Zhou K, Barendregt A, Westphal W, Heck AJ, Boekema EJ, Dickman MJ . RNA-guided complex from a bacterial immune system enhances target recognition through seed sequence interactions. Proc Natl Acad Sci USA, 2011,108(25):10092-10097. |
[44] | Mulepati S, Héroux A, Bailey S . Structural biology. Crystal structure of a CRISPR RNA-guided surveillance complex bound to a ssDNA target. Science, 2014,345(6203):1479-1484. |
[45] | Jinek M, Jiang F, Taylor DW, Sternberg SH, Kaya E, Ma E, Anders C, Hauer M, Zhou K, Lin S, Kaplan M, Iavarone AT, Charpentier E, Nogales E, Doudna JA . Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science, 2014,343(6176):1247997. |
[46] | Nishimasu H, Ran FA, Hsu PD, Konermann S, Shehata SI, Dohmae N, Ishitani R, Zhang F, Nureki O . Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell, 2014,156(5):935-949. |
[47] | Westra ER, Van Erp PB, Kunne T, Wong SP, Staals RH, Seegers CL, Bollen S, Jore MM, Semenova E, Severinov K, De Vos WM, Dame RT, De Vries R, Brouns SJ, Van Der Oost J. CRISPR immunity relies on the consecutive binding and degradation of negatively supercoiled invader DNA by Cascade and Cas3. Mol Cell, 2012,46(5):595-605. |
[48] | Semenova E, Jore MM, Datsenko KA, Semenova A, Westra ER, Wanner B, Van Der Oost J, Brouns SJ, Severinov K. Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence. Proc Natl Acad Sci USA, 2011,108(25):10098-10103. |
[49] | Elmore J, Deighan T, Westpheling J, Terns RM, Terns MP . DNA targeting by the type I-G and type I-A CRISPR-Cas systems of Pyrococcus furiosus. Nucleic Acids Res, 2015,43(21):10353-10363. |
[50] | Biswas A, Gagnon JN, Brouns SJ, Fineran PC, Brown CM . CRISPRTarget: bioinformatic prediction and analysis of crRNA targets. RNA Biol, 2013,10(5):817-827. |
[51] | Xue C, Seetharam AS, Musharova O, Severinov K, Brouns S JJ, Severin AJ, Sashital DG . CRISPR interference and priming varies with individual spacer sequences. Nucleic Acids Res, 2015,43(22):10831-10847. |
[52] | Pattanayak V, Lin S, Guilinger JP, Ma E, Doudna JA, Liu DR . High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat Biotechnol, 2013,31(9):839-843. |
[53] | Karvelis T, Gasiunas G, Young J, Bigelyte G, Silanskas A, Cigan M, Siksnys V . Rapid characterization of CRISPR- Cas9 protospacer adjacent motif sequence elements. Genome Biol, 2015,16:253. |
[54] | Leenay RT, Maksimchuk KR, Slotkowski RA, Agrawal RN, Gomaa AA, Briner AE, Barrangou R, Beisel CL . Identifying and visualizing functional PAM diversity across CRISPR-Cas systems. Mol Cell, 2016,62(1):137-147. |
[55] | Tang LC, Yang FY, He XX, Xie HH, Liu XY, Fu JH, Xi HT, Lu XS, Liu CB, Song ZM, Qu J, Zhao JZ, Gu F . Efficient cleavage resolves PAM preferences of CRISPR- Cas in human cells. Cell Regen, 2019,8(2):44-50. |
[56] | Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, Li Y, Fine EJ, Wu X, Shalem O, Cradick TJ, Marraffini LA, Bao G, Zhang F . DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol, 2013,31(9):827-832. |
[57] | Zhang YL, Ge XL, Yang FY, Zhang LP, Zheng JR, Tan XF, Jin ZB, Qu J, Gu F . Comparison of non-canonical PAMs for CRISPR/Cas9-mediated DNA cleavage in human cells. Sci Rep, 2014,4:5405. |
[58] | Tu MJ, Lin L, Cheng YL, He XB, Sun HH, Xie HH, Fu JH, Liu CB, Li J, Chen D, Xi HT, Xue DY, Liu Q, Zhao JZ, Gao CX, Song ZM, Qu J, Gu F . A ‘new lease of life’: FnCpf1 possesses DNA cleavage activity for genome editing in human cells. Nucleic Acids Res, 2017,45(19):11295-11304. |
[59] | Sampson TR, Saroj SD, Llewellyn AC, Tzeng YL, Weiss DS . A CRISPR/CAS system mediates bacterial innate immune evasion and virulence. Nature, 2013,497(7448):254-257. |
[60] | Zhang Y, Heidrich N, Ampattu BJ, Gunderson CW, Seifert HS, Schoen C, Vogel J, Sontheimer EJ . Processing- independent CRISPR RNAs limit natural transformation in neisseria meningitidis. Molecular Cell, 2013,50(4):488-503. |
[61] | Chylinski K, Le Rhun A, Charpentier E . The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems. RNA Biol, 2013,10(5):726-737. |
[62] | Hirano H, Gootenberg JS, Horii T, Abudayyeh OO, Kimura M, Hsu PD, Nakane T, Ishitani R, Hatada I, Zhang F, Nishimasu H, Nureki O . Structure and engineering of francisella novicida Cas9. Cell, 2016,164(5):950-961. |
[63] | Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA . RNA- guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol, 2013,31(3):233-239. |
[64] | Esvelt KM, Mali P, Braff JL, Moosburner M, Yaung SJ, Church GM . Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat Methods, 2013,10(11):1116-11121. |
[65] | Yamada M, Watanabe Y, Gootenberg JS, Hirano H, Ran FA, Nakane T, Ishitani R, Zhang F, Nishimasu H, Nureki O. Crystal Structure of the minimal Cas9 from campylobacter jejuni reveals the molecular diversity in the CRISPR-Cas9 systems. Mol Cell, 2017, 65(6): 1109-1121.e3. |
[1] | 卞中, 曹东平, 庄文姝, 张舒玮, 刘巧泉, 张林. 水稻分子设计育种启示:传统与现代相结合[J]. 遗传, 2023, 45(9): 718-740. |
[2] | 王秉政, 张超, 张佳丽, 孙锦. 利用单转录本表达Cas9和sgRNA条件性编辑果蝇基因组[J]. 遗传, 2023, 45(7): 593-601. |
[3] | 吴仲胜, 高誉, 杜勇涛, 党颂, 何康敏. CRISPR-Cas9基因编辑技术对细胞内源蛋白进行荧光标记的实验操作[J]. 遗传, 2023, 45(2): 165-175. |
[4] | 刘梅珍, 王立人, 李咏梅, 马雪云, 韩红辉, 李大力. 利用CRISPR/Cas9技术构建基因编辑大鼠模型[J]. 遗传, 2023, 45(1): 78-87. |
[5] | 张潇筠, 徐坤, 沈俊岑, 穆璐, 钱泓润, 崔婕妤, 马宝霞, 陈知龙, 张智英, 魏泽辉. 一种新型提高HDR效率的CRISPR/Cas9-Gal4BD供体适配基因编辑系统[J]. 遗传, 2022, 44(8): 708-719. |
[6] | 韩玉婷, 许博文, 李羽童, 卢心怡, 董习之, 邱雨浩, 车沁耘, 朱芮葆, 郑丽, 李孝宸, 司绪, 倪建泉. 模式动物果蝇的基因调控前沿技术[J]. 遗传, 2022, 44(1): 3-14. |
[7] | 王海涛, 李亭亭, 黄勋, 马润林, 刘秋月. 遗传修饰技术在绵羊分子设计育种中的应用[J]. 遗传, 2021, 43(6): 580-600. |
[8] | 彭定威, 李瑞强, 曾武, 王敏, 石翾, 曾检华, 刘小红, 陈瑶生, 何祖勇. 编辑MSTN半胱氨酸节基元促进两广小花猪肌肉生长[J]. 遗传, 2021, 43(3): 261-270. |
[9] | 李国玲, 杨善欣, 吴珍芳, 张献伟. 提高CRISPR/Cas9介导的动物基因组精确插入效率 研究进展[J]. 遗传, 2020, 42(7): 641-656. |
[10] | 陈赢男, 陆静. CRISPR/Cas9系统在林木基因编辑中的应用[J]. 遗传, 2020, 42(7): 657-668. |
[11] | 李霞, 施皖, 耿立召, 许建平. CRISPR/Cas核糖核蛋白介导的植物基因组编辑[J]. 遗传, 2020, 42(6): 556-564. |
[12] | 秦瑞英, 魏鹏程. Prime editing引导植物基因组精确编辑新局面[J]. 遗传, 2020, 42(6): 519-523. |
[13] | 胡风越, 王克剑. STEME系统:一种助力体内定向进化的新工具[J]. 遗传, 2020, 42(3): 231-235. |
[14] | 曹俊霞, 王友亮, 王征旭. 精准调控CRISPR/Cas9基因编辑技术研究进展[J]. 遗传, 2020, 42(12): 1168-1177. |
[15] | 杨新萍,于媛,许操. 重新设计与快速驯化创造新型作物[J]. 遗传, 2019, 41(9): 827-835. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: