遗传 ›› 2025, Vol. 47 ›› Issue (6): 681-693.doi: 10.16288/j.yczz.24-295
张祖铭1(), 周豪2, 黄学治2, 张多悦2, 张佳怡2, 林昱2, 方立崴2, 张秀昌1, 崔玉军2, 武雅蓉2(
), 李艳君3(
)
收稿日期:
2024-10-16
修回日期:
2024-12-18
出版日期:
2025-06-20
发布日期:
2025-01-10
通讯作者:
李艳君,博士,主任医师,研究方向:病原菌鉴定与溯源。E-mail: liyanjun1230@163.com;作者简介:
张祖铭,硕士研究生,专业方向:临床检验诊断学。E-mail: 13933396966@163.com
基金资助:
Zuming Zhang1(), Hao Zhou2, Xuezhi Huang2, Duoyue Zhang2, Jiayi Zhang2, Yu Lin2, Liwei Fang2, Xiuchang Zhang1, Yujun Cui2, Yarong Wu2(
), Yanjun Li3(
)
Received:
2024-10-16
Revised:
2024-12-18
Published:
2025-06-20
Online:
2025-01-10
Supported by:
摘要:
炭疽芽孢杆菌(Bacillus anthracis)是引发烈性传染病炭疽的病原体,也是一种典型生物战剂,主要感染牛、羊等牲畜以及人类,对畜牧业造成严重经济损失,威胁人类社会安全。深入了解该物种遗传多样性和进化推动力,是研究致病机制、开展炭疽疫情监测与防控的必要基础。但是,目前该领域研究不足,尤其缺乏基于多种类型变异的群体基因组水平研究。本文对公开发表的1,628株炭疽芽孢杆菌基因组序列进行收集和质控,在1,347株高质量序列中鉴定了SNP、Indel、大片段获得缺失、拷贝数变异以及基因组重排等多类型变异,共发现26,635个SNP位点、9,997个Indel位点、21个大片段获得缺失事件、25个拷贝数变异以及5个倒位。系统发育重建表明,该物种可分为6个主要种群及17个亚群。综合种群多样性和地理分布特征发现,美国菌株遗传多样性最高,而非洲菌株则呈现明显的地理聚集性特征。此外,通过选择压力信号分析,发现了4个与耐药和芽孢形成相关的基因(rpoB、fusA、spo0F、GBAA_RS11385)存在强选择压力。本研究重建了全球炭疽芽孢杆菌的种群结构,并揭示了该物种进化过程中关键的变异位点,为炭疽芽孢杆菌识别、溯源和致病机制研究提供了靶标,同时可为炭疽疫情的预防和控制提供科学支撑。
张祖铭, 周豪, 黄学治, 张多悦, 张佳怡, 林昱, 方立崴, 张秀昌, 崔玉军, 武雅蓉, 李艳君. 基于多类型变异的炭疽芽孢杆菌群体基因组学研究[J]. 遗传, 2025, 47(6): 681-693.
Zuming Zhang, Hao Zhou, Xuezhi Huang, Duoyue Zhang, Jiayi Zhang, Yu Lin, Liwei Fang, Xiuchang Zhang, Yujun Cui, Yarong Wu, Yanjun Li. Study on population genomics of Bacillus anthracis based on multiple types of genetic variations[J]. Hereditas(Beijing), 2025, 47(6): 681-693.
表2
倒位事件打断的基因统计"
编号 | 突变序列 | 参考序列 | 基因 | 基因产物 |
---|---|---|---|---|
INV1-1 | GCA_000832665.1 | GCA_000008445.1 | 基因间区 | − |
INV1-2 | GCA_000832665.1 | GCA_000008445.1 | rrsK | 16S ribosomal RNA |
INV2-1 | GCA_000021445.1 | GCA_000008445.1 | GBAA_0438 | Putative prophage LambdaBa04, DnaD replication protein |
INV2-2 | GCA_000021445.1 | GCA_000008445.1 | GBAA_4120 | Putative prophage LambdaBa02, DNA replication protein DnaC |
INV3-1 | GCA_000832565.1 | GCA_000008445.1 | GBAA_5432 | Transcription antiterminator, LytR family |
INV3-2 | GCA_000832565.1 | GCA_000008445.1 | GBAA_5509 | UDP-N-acetylglucosamine 2-epimerase |
INV4-1 | GCA_024396795.1 | GCA_000008445.1 | GBAA_1799 | Proton/sodium-glutamate symporter |
INV4-2 | GCA_024396795.1 | GCA_000008445.1 | aspA | Aspartate ammonia-lyase |
INV5-1 | GCA_000833125.1 | GCA_000008445.1 | GBAA_5432 | Transcription antiterminator, LytR family |
INV5-2 | GCA_000833125.1 | GCA_000008445.1 | GBAA_5509 | UDP-N-acetylglucosamine 2-epimerase |
表3
炭疽芽孢杆菌中受到较强选择压力的基因"
基因编号 | 基因 | dN/dS (GLPB;GLWL;GMYN; GNG;GYN) | 趋同 位点 | 固定 位点 | 突变 密度# | 基因产物 |
---|---|---|---|---|---|---|
GBAA_RS00580* | rpoB | 4.8;2.5;2.6;2.7;2.5 | 4 | 3 | 14.4 | DNA-directed RNA polymerase subunit beta |
GBAA_RS00605* | fusA | 2.4;1.4;1.5;1.5;1.7 | 2 | 1 | 17.8 | 延伸因子G |
GBAA_RS02100 | topB | 2.1;1.0;1.2;1.1;1.2 | 0 | 1 | 6.4 | DNA拓扑异构酶 |
GBAA_RS02855 | NA | 3.8;1.9;1.8;2.1;1.8 | 0 | 1 | 7.0 | Glutamate synthase-related protein |
GBAA_RS03475 | NA | 1.3;1.5;1.5;1.6;1.5 | 0 | 1 | 19.8 | Alanine/glycine:cation symporter family protein |
GBAA_RS04590 | NA | 3.0;1.5;1.6;1.6;1.9 | 0 | 4 | 9.5 | 过氧化氢酶 |
GBAA_RS27185* | spo0F | − | 3 | 1 | 84.0 | Sporulation initiation phosphotransferase Spo0F |
GBAA_RS11385* | NA | − | 8 | 1 | 99.6 | BA2291 family sporulation histidine kinase |
[1] |
Dragon DC, Rennie RP. The ecology of anthrax spores: tough but not invincible. Can Vet J, 1995, 36(5): 295-301.
pmid: 7773917 |
[2] |
Pilo P, Frey J. Bacillus anthracis: molecular taxonomy, population genetics, phylogeny and patho-evolution. Infect Genet Evol, 2011, 11(6): 1218-1224.
pmid: 21640849 |
[3] | Anthrax in humans and animals. Geneva: World Health Organization, 2008. |
[4] | He X, Huang LY. Advanced in pathogenesis of Bacillus anthracis. Microbiol China, 2004, 31(4): 101-105. |
何湘, 黄留玉. 炭疽杆菌致病性研究进展. 微生物学通报, 2004, 31(4):101-105. | |
[5] | World Health Organization. Disease outbreak news. anthrax in zambia, 2023. |
[6] |
Wang DS, Wang BX, Zhu L, Wu SY, Lyu YF, Feng EL, Pan C, Jiao L, Cui YJ, Liu XK, Wang HL. Genotyping and population diversity of Bacillus anthracis in China based on MLVA and canSNP analysis. Microbiol Res, 2020, 233: 126414.
pmid: 31981903 |
[7] | Wang BX, Smith KL, Keys C, CokerP, Keimp, Jones MH. Molecular epidemiology of Bacillus anthracis in China. Prog Microbiol Immunol, 2002, 30(1): 14-17. |
王秉翔, Smith KL, Keys C, CokerP, Keimp, Jones MH. 中国的炭疽杆菌DNA分型及其地理分布. 微生物学免疫学进展, 2002, 30(1): 14-17. | |
[8] | China Daily. Anthrax outbreak closes cattle farm in Shandong. (2024-8-2) [2025-1-7]. https://www.chinadaily.com.cn/a/202408/02/WS66acc0bda3104e74fddb83f5.html. |
[9] |
Shangkuan YH, Yang JF, Lin HC, Shaio MF. Comparison of PCR-RFLP, ribotyping and ERIC-PCR for typing Bacillus anthracis and Bacillus cereus strains. J Appl Microbiol, 2000, 89(3): 452-462.
pmid: 11021577 |
[10] |
Jensen GB, Fisker N, Sparsø T, Andrup L. The possibility of discriminating within the Bacillus cereus group using gyrB sequencing and PCR-RFLP. Int J Food Microbiol, 2005, 104(1): 113-120.
pmid: 16005534 |
[11] |
Daffonchio D, Borin S, Frova G, Gallo R, Mori E, Fani R, Sorlini C. A randomly amplified polymorphic DNA marker specific for the Bacillus cereus group is diagnostic for Bacillus anthracis. Appl Environ Microbiol, 1999, 65(3): 1298-1303.
pmid: 10049896 |
[12] |
Helgason E, Okstad OA, Caugant DA, Johansen HA, Fouet A, Mock M, Hegna I, Kolstø AB. Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis--one species on the basis of genetic evidence. Appl Environ Microbiol, 2000, 66(6): 2627-2630.
pmid: 10831447 |
[13] |
Jackson PJ, Hill KK, Laker MT, Ticknor LO, Keim P. Genetic comparison of Bacillus anthracis and its close relatives using amplified fragment length polymorphism and polymerase chain reaction analysis. J Appl Microbiol, 1999, 87(2): 263-269.
pmid: 10475963 |
[14] |
Hill KK, Ticknor LO, Okinaka RT, Asay M, Blair H, Bliss KA, Laker M, Pardington PE, Richardson AP, Tonks M, Beecher DJ, Kemp JD, Kolstø AB, Wong ACL, Keim P, Jackson PJ. Fluorescent amplified fragment length polymorphism analysis of Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis isolates. Appl Environ Microbiol, 2004, 70(2): 1068-1080.
pmid: 14766590 |
[15] | Wu SY, Liu XK, Song L, Wei H, Wang HL. Progress on the molecular genotyping techniques of Bacillus anthracis. Lett Biotechnol, 2011, 22(5): 738-742. |
吴松羽, 刘先凯, 宋丽, 魏华, 王恒樑. 炭疽芽孢杆菌分子分型研究进展. 生物技术通讯, 2011, 22(5): 738-742. | |
[16] |
Keim P, Price LB, Klevytska AM, Smith KL, Schupp JM, Okinaka R, Jackson PJ, Hugh-Jones ME. Multiple-locus variable-number tandem repeat analysis reveals genetic relationships within Bacillus anthracis. J Bacteriol, 2000, 182(10): 2928-2936.
pmid: 10781564 |
[17] |
Limmathurotsakul D, Golding N, Dance DAB, Messina JP, Pigott DM, Moyes CL, Rolim DB, Bertherat E, Day NPJ, Peacock SJ, Hay SI. Predicted global distribution of Burkholderia pseudomallei and burden of melioidosis. Nat Microbiol, 2016, 1(1): 15008.
pmid: 27571754 |
[18] |
Chewapreecha C, Holden MTG, Vehkala M, Välimäki N, Yang ZR, Harris SR, Mather AE, Tuanyok A, De Smet B, Le Hello S, Bizet C, Mayo M, Wuthiekanun V, Limmathurotsakul D, Phetsouvanh R, Spratt BG, Corander J, Keim P, Dougan G, Dance DAB, Currie BJ, Parkhill J, Peacock SJ. Global and regional dissemination and evolution of Burkholderia pseudomallei. Nat Microbiol, 2017, 2: 16263.
pmid: 28112723 |
[19] |
Yang C, Pei XY, Wu YR, Yan L, Yan YF, Song YQ, Coyle NM, Martinez-Urtaza J, Quince C, Hu QH, Jiang M, Feil E, Yang DJ, Song YJ, Zhou DS, Yang RF, Falush D, Cui YJ. Recent mixing of Vibrio parahaemolyticus populations. ISME J, 2019, 13(10): 2578-2588.
pmid: 31235840 |
[20] | Zheng HY, Yan L, Yang C, Wu YR, Qin JL, Hao TY, Yang DJ, Guo YC, Pei XY, Zhao TY, Cui YJ. Population genomics study of Vibrio alginolyticus. Hereditas(Beijing), 2021, 43(4): 350-361. |
郑宏源, 闫琳, 杨超, 武雅蓉, 秦婧靓, 郝彤宇, 杨大进, 郭云昌, 裴晓燕, 赵彤言, 崔玉军. 溶藻弧菌群体基因组学研究. 遗传, 2021, 43(4): 350-361. | |
[21] |
Van Ert MN, Easterday WR, Huynh LY, Okinaka RT, Hugh-Jones ME, Ravel J, Zanecki SR, Pearson T, Simonson TS, U'Ren JM, Kachur SM, Leadem-Dougherty RR, Rhoton SD, Zinser G, Farlow J, Coker PR, Smith KL, Wang BX, Kenefic LJ, Fraser-Liggett CM, Wagner DM, Keim P. Global genetic population structure of Bacillus anthracis. PLoS One, 2007, 2(5): e461.
pmid: 17520020 |
[22] |
Bruce SA, Schiraldi NJ, Kamath PL, Easterday WR, Turner WC. A classification framework for Bacillus anthracis defined by global genomic structure. Evol Appl, 2020, 13(5): 935-944.
pmid: 32431744 |
[23] |
Wu YR, Hao TY, Qian XW, Zhang XLL, Song YJ, Yang RF, Cui YJ. Small insertions and deletions drive genomic plasticity during adaptive evolution of Yersinia pestis. Microbiol Spectr, 2022, 10(3): e0224221.
pmid: 35438532 |
[24] |
Gonzalo-Asensio J, Pérez I, Aguiló N, Uranga S, Picó A, Lampreave C, Cebollada A, Otal I, Samper S, Martín C. New insights into the transposition mechanisms of IS6110 and its dynamic distribution between Mycobacterium tuberculosis complex lineages. PLoS Genet, 2018, 14(4): e1007282.
pmid: 29649213 |
[25] |
Keim P, Gruendike JM, Klevytska AM, Schupp JM, Challacombe J, Okinaka R. The genome and variation of Bacillus anthracis. Mol Aspects Med, 2009, 30(6): 397-405.
pmid: 19729033 |
[26] |
Okinaka RT, Price EP, Wolken SR, Gruendike JM, Chung WK, Pearson T, Xie G, Munk C, Hill KK, Challacombe J, Ivins BE, Schupp JM, Beckstrom-Sternberg SM, Friedlander A, Keim P. An attenuated strain of Bacillus anthracis (CDC 684) has a large chromosomal inversion and altered growth kinetics. BMC Genomics, 2011, 12(1): 477.
pmid: 21962024 |
[27] |
Furuta Y, Harima H, Ito E, Maruyama F, Ohnishi N, Osaki K, Ogawa H, Squarre D, Hang'Ombe BM, Higashi H. Loss of bacitracin resistance due to a large genomic deletion among Bacillus anthracis strains. mSystems, 2018, 3(5): e00182-18.
pmid: 30417107 |
[28] |
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 2014, 30(15): 2114-2120.
pmid: 24695404 |
[29] |
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol, 2012, 19(5): 455-477.
pmid: 22506599 |
[30] |
Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun, 2018, 9(1): 5114.
pmid: 30504855 |
[31] |
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol, 1990, 215(3): 403-410.
pmid: 2231712 |
[32] |
Delcher AL, Salzberg SL, Phillippy AM. Using MUMmer to identify similar regions in large sequence sets. Curr Protoc Bioinformatics, 2003, 10(3): 1-18.
pmid: 18428693 |
[33] | Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Ithaca: Cornell University Library, arXiv.org, 2013. |
[34] |
Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G, Levy-Moonshine A, Jordan T, Shakir K, Roazen D, Thibault J, Banks E, Garimella KV, Altshuler D, Gabriel S, Depristo MA. From FastQ data to high confidence variant calls: the genome analysis toolkit best practices pipeline. Curr Protoc Bioinformatics, 2013, 43(1): 11.10.1-11.10.33.
pmid: 25431634 |
[35] |
Benson G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res, 1999, 27(2): 573-580.
pmid: 9862982 |
[36] |
Didelot X, Wilson DJ. ClonalFrameML: efficient inference of recombination in whole bacterial genomes. PLoS Comput Biol, 2015, 11(2): e1004041.
pmid: 25675341 |
[37] |
Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol, 2015, 32(1): 268-274.
pmid: 25371430 |
[38] |
Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res, 2021, 49(W1): W293-W296.
pmid: 33885785 |
[39] |
Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics, 2014, 30(14): 2068-2069.
pmid: 24642063 |
[40] |
Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MTG, Fookes M, Falush D, Keane JA, Parkhill J. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics, 2015, 31(22): 3691-3693.
pmid: 26198102 |
[41] |
Li RQ, Li YR, Kristiansen K, Wang J. SOAP: short oligonucleotide alignment program. Bioinformatics, 2008, 24(5): 713-714.
pmid: 18227114 |
[42] |
Hunt M, Silva ND, Otto TD, Parkhill J, Keane JA, Harris SR. Circlator: automated circularization of genome assemblies using long sequencing reads. Genome Biol, 2015, 16(1): 294.
pmid: 26714481 |
[43] |
Goel M, Sun HQ, Jiao WB, Schneeberger K. SyRI: finding genomic rearrangements and local sequence differences from whole-genome assemblies. Genome Biol, 2019, 20(1): 277.
pmid: 31842948 |
[44] |
Kolmogorov M, Armstrong J, Raney BJ, Streeter I, Dunn M, Yang FT, Odom D, Flicek P, Keane TM, Thybert D, Paten B, Pham S. Chromosome assembly of large and complex genomes using multiple references. Genome Res, 2018, 28(11): 1720-1732.
pmid: 30341161 |
[45] |
Minkin I, Medvedev P. Scalable multiple whole-genome alignment and locally collinear block construction with SibeliaZ. Nat Commun, 2020, 11(1): 6327.
pmid: 33303762 |
[46] |
Crispell J, Balaz D, Gordon SV. HomoplasyFinder: a simple tool to identify homoplasies on a phylogeny. Microb Genom, 2019, 5(1): e000245.
pmid: 30663960 |
[47] |
Wang DP, Zhang YB, Zhang Z, Zhu J, Yu J. KaKs_ Calculator 2.0: a toolkit incorporating gamma-series methods and sliding window strategies. Genomics Proteomics Bioinformatics, 2010, 8(1): 77-80.
pmid: 20451164 |
[48] |
Guttenplan SB, Blair KM, Kearns DB. The EpsE flagellar clutch is bifunctional and synergizes with EPS biosynthesis to promote Bacillus subtilis biofilm formation. PLoS Genet, 2010, 6(12): e1001243.
pmid: 21170308 |
[49] |
Radeck J, Lautenschlager N, Mascher T. The essential UPP phosphatase pair BcrC and UppP connects cell wall homeostasis during growth and sporulation with cell envelope stress response in Bacillus subtilis. Front Microbiol, 2017, 8: 2403.
pmid: 29259598 |
[50] |
Dobihal GS, Flores-Kim J, Roney IJ, Wang XD, Rudner DZ. The WalR-WalK signaling pathway modulates the activities of both CwlO and LytE through control of the peptidoglycan deacetylase PdaC in Bacillus subtilis. J Bacteriol, 2022, 204(2): e0053321.
pmid: 34871030 |
[51] |
Niemann V, Koch-Singenstreu M, Neu A, Nilkens S, Götz F, Unden G, Stehle T. The NreA protein functions as a nitrate receptor in the staphylococcal nitrate regulation system. J Mol Biol, 2014, 426(7): 1539-1553.
pmid: 24389349 |
[52] |
Martín M, Mendoza D. Regulation of Bacillus subtilis DesK thermosensor by lipids. Biochem J. 2013, 451(2): 269-275.
pmid: 23356219 |
[53] |
Hughes D. Evaluating genome dynamics: the constraints on rearrangements within bacterial genomes. Genome Biol, 2000, 1(6): REVIEWS0006.
pmid: 11380986 |
[54] |
Moeller R, Vlašić I, Reitz G, Nicholson WL. Role of altered rpoB alleles in Bacillus subtilis sporulation and spore resistance to heat, hydrogen peroxide, formaldehyde, and glutaraldehyde. Arch Microbiol, 2012, 194(9): 759-767.
pmid: 22484477 |
[55] |
Li MC, Lu J, Lu Y, Xiao TY, Liu HC, Lin SQ, Xu D, Li GL, Zhao XQ, Liu ZG, Zhao LL, Wan KL. rpoB mutations and effects on rifampin resistance in mycobacterium tuberculosis. Infect Drug Resist, 2021, 14: 4119-4128.
pmid: 34675557 |
[56] | Hu ZQ, Liu YW, Zhou W, Gao LL, Chen JY, Xie WS, Zhou DW, Zhang SF, Zhong BT. Relationship between rpoB mutations and the levels of rifampicin resistance in M. tuberculosis. Chin J Zoonoses, 2016, 32(1): 39-50. |
胡族琼, 刘燕文, 周文, 高璐璐, 陈俊宇, 谢伟胜, 周德旺, 曾少芳, 钟炳棠. 结核分枝杆菌rpoB基因突变特征与利福平耐药水平关系的研究. 中国人兽共患病学报, 2016, 32(1): 39-50. | |
[57] |
Fortnagel P, Freese EB. Morphological stages of Bacillus subtilis sporulation and resistance to fusidic acid. J Gen Microbiol, 1977, 101(2): 299-306.
pmid: 411887 |
[58] |
Hajikhani B, Goudarzi M, Kakavandi S, Amini S, Zamani S, van Belkum A, Goudarzi H, Dadashi M. The global prevalence of fusidic acid resistance in clinical isolates of Staphylococcus aureus: a systematic review and meta-analysis. Antimicrob Resist Infect Control, 2021, 10(1): 75.
pmid: 33933162 |
[59] |
Kobayashi H, Kobayashi K, Kobayashi Y. Isolation and characterization of fusidic acid-resistant, sporulation- defective mutants of Bacillus subtilis. J Bacteriol, 1977, 132(1): 262-269.
pmid: 410781 |
[60] |
Tan IS, Ramamurthi KS. Spore formation in Bacillus subtilis. Environ Microbiol Rep, 2014, 6(3): 212-225.
pmid: 24983526 |
[1] | 田盼辉, 许玥, 张永清, 王天云. 遗传病并不一定会遗传:遗传病概念的中文翻译与建议[J]. 遗传, 2024, 46(9): 673-676. |
[2] | 王陈颖, 肖荟尹, 诸志鹏, 郑素雅, 徐良, 陈烨. 子宫平滑肌肉瘤的分子遗传学特征与研究进展[J]. 遗传, 2024, 46(8): 603-626. |
[3] | 刘文兵, 刘丹, 闫进, 刘欣, 王前飞. 重症新型冠状病毒肺炎患者遗传易感性研究进展[J]. 遗传, 2022, 44(8): 672-681. |
[4] | 毛轲, 孟子秋, 张永彪. 神经嵴发育调控及颅面部遗传基础研究进展[J]. 遗传, 2022, 44(12): 1089-1102. |
[5] | 巴恒星, 胡鹏飞, 李春义. 鹿科动物基因组学研究进展[J]. 遗传, 2021, 43(4): 308-322. |
[6] | 郑宏源, 闫琳, 杨超, 武雅蓉, 秦婧靓, 郝彤宇, 杨大进, 郭云昌, 裴晓燕, 赵彤言, 崔玉军. 溶藻弧菌群体基因组学研究[J]. 遗传, 2021, 43(4): 350-361. |
[7] | 钱国清. 慢性阻塞性肺疾病全基因组关联研究进展[J]. 遗传, 2020, 42(9): 832-846. |
[8] | 邓雯文, 李才武, 赵思越, 李仁贵, 何永果, 吴代福, 杨盛智, 黄炎, 张和民, 邹立扣. 大熊猫源致病大肠杆菌CCHTP全基因组测序及耐药和毒力基因分析[J]. 遗传, 2019, 41(12): 1138-1147. |
[9] | 邓雯文,龙梅,杨盛智,邹立扣. β-内酰胺酶耐药基因blaOKP进化及其侧翼序列特征研究[J]. 遗传, 2018, 40(7): 585-592. |
[10] | 黄莹,刘琪,池连江,石承民,吴祯,胡敏,石宏,陈华. BIG-Annotator:基因组测序数据高效功能注释及其在遗传诊断中的应用[J]. 遗传, 2018, 40(11): 1015-1023. |
[11] | 杨超, 杨瑞馥, 崔玉军. 细菌全基因组关联研究的方法与应用[J]. 遗传, 2018, 40(1): 57-65. |
[12] | 杨献伟,杨瑞馥,崔玉军. 细菌基因组同源重组:量化与鉴定[J]. 遗传, 2016, 38(2): 137-143. |
[13] | 邓海君,黄勇,黄爱龙,龙泉鑫. 儿童与成人慢性乙型肝炎患者乙型肝炎病毒Core基因区准种特征及正选择压力差异分析[J]. 遗传, 2015, 37(5): 465-472. |
[14] | 常飞, 邹文超, 高芳銮, 沈建国, 詹家绥. 不同寄主来源的马铃薯Y病毒群体遗传结构的比较分析[J]. 遗传, 2015, 37(3): 292-301. |
[15] | 江静, 钱前, 马伯军,高振宇. 表观遗传变异及其在作物改良中的应用[J]. 遗传, 2014, 36(5): 469-475. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: