[1] Cheadle C, Fan JS, Cho-Chung YS, Werner T, Ray J, Do L, Gorospe M, Becker KG. Control of gene expression during T cell activation: alternate regulation of mRNA transcription and mRNA stability. BMC Genom , 2005, 6: 75. [2] Malecki M, Viegas SC, Carneiro T, Golik P, Dressaire C, Ferreira MG, Arraiano CM. The exoribonuclease Dis3L2 defines a novel eukaryotic RNA degradation pathway. EMBO J , 2013, 32(13): 1842-1854. [3] Chang JH, Jiao XF, Chiba K, Oh C, Martin CE, Kiledjian M, Tong L. Dxo1 is a new type of eukaryotic enzyme with both decapping and 5′-3′ exoribonuclease activity. Nat Struct Mol Biol , 2012, 19(10): 1011-1017. [4] Song MG, Bail S, Kiledjian M. Multiple Nudix family proteins possess mRNA decapping activity. RNA , 2013, 19(3): 390-399. [5] Li Y, Song MG, Kiledjian M. Differential utilization of decapping enzymes in mammalian mRNA decay pathways. RNA , 2011, 17(3): 419-428. [6] Haas G, Braun JE, Igreja C, Tritschler F, Nishihara T, Izaurralde E. HPat provides a link between deadenylation and decapping in metazoa. J Cell Biol , 2010, 189(2): 289-302. [7] Chang CT, Bercovich N, Loh B, Jonas S, Izaurralde E. The activation of the decapping enzyme DCP2 by DCP1 occurs on the EDC4 scaffold and involves a conserved loop in DCP1. Nucleic Acids Res , 2014, 42(8): 5217-5233. [8] Wolf J, Valkov E, Allen MD, Meineke B, Gordiyenko Y, McLaughlin SH, Olsen TM, Robinson CV, Bycroft M, Stewart M, Passmore LA. Structural basis for Pan3 binding to Pan2 and its function in mRNA recruitment and deadenylation . EMBO J , 2014, 33(14): 1514-1526. [9] Huang KL, Chadee AB, Chen CY, Zhang YQ, Shyu AB. Phosphorylation at intrinsically disordered regions of PAM2 motif-containing proteins modulates their interactions with PABPC1 and influences mRNA fate. RNA , 2013, 19(3): 295-305. [10] Bhandari D, Raisch T, Weichenrieder O, Jonas S, Izaurralde E. Structural basis for the Nanos-mediated recruitment of the CCR4-NOT complex and translational repression. Genes Dev , 2014, 28(8): 888-901. [11] Barckmann B, Simonelig M. Control of maternal mRNA stability in germ cells and early embryos. Biochim Biophys Acta , 2013, 1829(6-7): 714-724. [12] Loh B, Jonas S, Izaurralde E. The SMG5-SMG7 heterodimer directly recruits the CCR4-NOT deadenylase complex to mRNAs containing nonsense codons via interaction with POP2. Genes Dev , 2013, 27(19): 2125-2138. [13] Barišić-Jäger E, Kręcioch I, Hosiner S, Antic S, Dorner S. HPat a decapping activator interacting with the miRNA effector complex. PLoS One. 2013, 8(8): e71860. [14] Chowdhury A, Kalurupalle S, Tharun S. Pat1 contributes to the RNA binding activity of the Lsm1-7-Pat1 complex. RNA , 2014, 20(9): 1465-1475. [15] Wu DH, Muhlrad D, Bowler MW, Jiang SM, Liu Z, Parker R, Song HW. Lsm2 and Lsm3 bridge the interaction of the Lsm1-7 complex with Pat1 for decapping activation. Cell Res , 2014, 24(2): 233-246. [16] Sharif H, Conti E. Architecture of the Lsm1-7-Pat1 complex: a conserved assembly in eukaryotic mRNA turnover. Cell Rep , 2013, 5(2): 283-291. [17] Badis G, Saveanu C, Fromont-Racine M, Jacquier A. Targeted mRNA degradation by deadenylation-independent decapping. Mol Cell , 2004, 15(1): 5-15. [18] He F, Li CF, Roy B, Jacobson A. Yeast Edc3 targets RPS28B mRNA for decapping by binding to a 3′ untranslated region decay-inducing regulatory element. Mol Cell Biol , 2014, 34(8): 1438-1451 [19] Muhlrad D, Parker R. The yeast EDC1 mRNA undergoes deadenylation-independent decapping stimulated by Not2p, Not4p, and Not5p. EMBO J , 2005, 24(5): 1033-1045 [20] Nagarajan VK, Jones CI, Newbury SF, Green PJ. XRN 5′→3′ exoribonucleases: structure, mechanisms and functions. Biochim Biophys Acta , 2013, 1829(6-7): 590-603. [21] Nishihara T, Zekri L, Braun JE, Izaurralde E. miRISC recruits decapping factors to miRNA targets to enhance their degradation. Nucleic Acids Res , 2013, 41(18): 8692-8705. [22] Chen CYA, Shyu AB. Deadenylation and P-bodies. In: Chan EKL, Fritzler MJ, eds. Ten Years of Progress in GW/P Body Research. New York: Springer, 2013: 183-195. [23] Su W, Slepenkov SV, Slevin MK, Lyons SM, Ziemniak M, Kowalska J, Darzynkiewicz E, Jemielity J, Marzluff WF, Rhoads RE. mRNAs containing the histone 3′ stem-loop are degraded primarily by decapping mediated by oligouridylation of the 3′ end. RNA , 2013, 19(1): 1-16. [24] Song MG, Kiledjian M. 3′ Terminal oligo U-tract-mediated stimulation of decapping. RNA , 2007, 13(12): 2356-2365. [25] Rissland OS, Norbury CJ. Decapping is preceded by 3′ uridylation in a novel pathway of bulk mRNA turnover. Nat Struct Mol Biol , 2009, 16(6): 616-623. [26] Sement FM, Ferrier E, Zuber H, Merret R, Alioua M, Deragon JM, Bousquet-Antonelli C, Lange H, Gagliardi D. Uridylation prevents 3′ trimming of oligoadenylated mRNAs. Nucleic Acids Res , 2013, 41(14): 7115-7127. [27] Morozov IY, Jones MG, Razak AA, Rigden DJ, Caddick MX. CUCU modification of mRNA promotes decapping and transcript degradation in Aspergillus nidulans . Mol Cell Biol , 2010, 30(2): 460-469. [28] Gallouzi IE, Wilusz J. A DIStinctively novel exoribonuclease that really likes U. EMBO J , 2013, 32(13): 1799-1801. [29] Nissan T, Rajyaguru P, She MP, Song HW, Parker R. Decapping activators in Saccharomyces cerevisiae act by multiple mechanisms. Mol Cell , 2010, 39(5): 773-783. [30] Braun JE, Truffault V, Boland A, Huntzinger E, Chang CT, Haas G, Weichenrieder O, Coles M, Izaurralde E. A direct interaction between DCP1 and XRN1 couples mRNA decapping to 5′ exonucleolytic degradation. Nat Struct Mol Biol , 2012, 19(12): 1324-1231. [31] Medina DA, Jordán-Pla A, Millán-Zambrano G, Chávez S, Choder M, Pérez-Ortín JE. Cytoplasmic 5′-3′ exonuclease Xrn1p is also a genome-wide transcription factor in yeast. Front Genet , 2014, 5: 1. [32] Liu HD, Kiledjian M. Scavenger decapping activity facilitates 5′ to 3′ mRNA decay. Mol Cell Biol , 2005, 25(22): 9764-9772. [33] Wypijewska A, Bojarska E, Lukaszewicz M, Stepinski J, Jemielity J, Davis RE, Darzynkiewicz E. 7-methylguanosine diphosphate (m 7 GDP) is not hydrolyzed but strongly bound by decapping scavenger (DcpS) enzymes and potently inhibits their activity. Biochemistry , 2012, 51(40): 8003-8013. [34] Buschmann J, Moritz B, Jeske M, Lilie H, Schierhorn A, Wahle E. Identification of Drosophila and human 7-methyl GMP-specific nucleotidases. J Biol Chem , 2013, 288(4): 2441-2451. [35] Richards J, Liu QS, Pellegrini O, Celesnik H, Yao SY, Bechhofer DH, Condon C, Belasco JG. An RNA pyrophosphohydrolase triggers 5′-exonucleolytic degradation of mRNA in Bacillus subtilis . Mol Cell , 2011, 43(6): 940-949. [36] Laalami S, Zig L, Putzer H. Initiation of mRNA decay in bacteria. Cell Mol Life Sci , 2014, 71(10): 1799-1828. [37] Linder P, Lemeille S, Redder P. Transcriptome-wide analyses of 5′-ends in RNase J mutants of a gram-positive pathogen reveal a role in RNA maturation, regulation and degradation. PLoS Genet , 2014, 10(2): e1004207. [38] Fang M, Zeisberg WM, Condon C, Ogryzko V, Danchin A, Mechold U. Degradation of nanoRNA is performed by multiple redundant RNases in Bacillus subtilis. Nucleic Acids Res , 2009, 37(15): 5114-5125. [39] Goldman SR, Sharp JS, Vvedenskaya IO, Livny J, Dove SL, Nickels BE. NanoRNAs prime transcription initiation in vivo . Mol Cell , 2011, 42(6): 817-825. [40] Roux CM, DeMuth JP, Dunman PM. Characterization of components of the Staphylococcus aureus mRNA degradosome holoenzyme-like complex. J Bacteriol , 2011, 193(19): 5520-5526. [41] Redko Y, Aubert S, Stachowicz A, Lenormand P, Namane A, Darfeuille F, Thibonnier M, De Reuse H. A minimal bacterial RNase J-based degradosome is associated with translating ribosomes. Nucleic Acids Res , 2013, 41(1): 288-301. [42] Hu WQ, Sweet TJ, Chamnongpol S, Baker KE, Coller J. Co-translational mRNA decay in Saccharomyces cerevisiae. Nature , 2009, 461(7261): 225-229. [43] Luro S, Germain A, Sharwood RE, Stern DB. RNase J participates in a pentatricopeptide repeat protein-mediated 5′ end maturation of chloroplast mRNAs. Nucleic Acids Res , 2013, 41(19): 9141-9151. [44] Hu HP, Mao SL, Bugrysheva JV, Pruett S, Liotta DC, Scott JR, Snyder JP. Group A streptococcus inhibitors by high-throughput virtual screening. Eur J Med Chem , 2014, 82: 120-126. [45] Li S, Jia Y, Jacobson B, McCauley J, Kratzke R, Bitterman PB, Wagner CR. Treatment of breast and lung cancer cells with a N-7 benzyl guanosine monophosphate tryptamine phosphoramidate pronucleotide (4Ei-1) results in chemosensitization to gemcitabine and induced eIF4E proteasomal degradation. Mol Pharm , 2013, 10(2): 523-531. [46] Ziemniak M, Strenkowska M, Kowalska J, Jemielity J. Potential therapeutic applications of RNA cap analogs. Future Med Chem , 2 013, 5(10): 1141-1172. [47] Yoffe Y, Léger M, Zinoviev A, Zuberek J, Darzynkiewicz E, Wagner G, Shapira M. Evolutionary changes in the Leishmania eIF4F complex involve variations in the eIF4E-eIF4G interactions. Nucleic Acids Res , 2009, 37(10): 3243-3253. [48] Hopkins KC, McLane LM, Maqbool T, Panda D, Gordesky-Gold B, Cherry S. A genome-wide RNAi screen reveals that mRNA decapping restricts bunyaviral replication by limiting the pools of Dcp2-accessible targets for cap-snatching. Genes Dev , 2013, 27(13): 1511-1525. [49] Dougherty JD, Reineke LC, Lloyd RE. mRNA decapping enzyme 1a (Dcp1a)-induced translational arrest through protein kinase R (PKR) activation requires the N-terminal enabled vasodilator-stimulated protein homology 1 (EVH1) domain. J Biol Chem , 2014, 289(7): 3936-3949. [50] Giménez-Barcons M, Alves-Rodrigues I, Jungfleisch J, Van Wynsberghe PM, Ahlquist P, Díez J. The cellular decapping activators LSm1, Pat1, and Dhh1 control the ratio of subgenomic to genomic Flock House virus RNAs. J Virol , 2013, 87(11): 6192-6200. [51] Deshmukh MV, Jones BN, Quang-Dang DU, Flinders J, Floor SN, Kim C, Jemielity J, Kalek M, Darzynkiewicz E, Gross JD. mRNA decapping is promoted by an RNA-binding channel in Dcp2. Mol Cell , 2008, 29(3): 324-336. [52] Kulkarni M, Ozgur S, Stoecklin G. On track with P-bodies. Biochem Soc Trans , 2010, 38(Pt 1): 242-251. [53] Dorléans A, Li de la Sierra-Gallay I, Piton J, Zig L, Gilet L, Putzer H, Condon C. Molecular basis for the recognition and cleavage of RNA by the bifunctional 5′-3′ exo/endoribonuclease RNase J. Structure , 2011, 19(9): 1252-1261. [54] Eidem TM, Roux CM, Dunman PM. RNA decay: a novel therapeutic target in bacteria. Wiley Interdiscip Rev RNA , 2012, 3(3): 443-454. [55] Shoemaker CJ, Green R. Translation drives mRNA quality control. Nat Struct Mol Biol , 2012, 9(6): 594-601. |