[1] | Eisenberg E, Levanon EY. Human housekeeping genes are compact. Trends Genet, 2003, 19(7): 362-365. | [2] | Butte AJ, Dzau VJ, Glueck SB. Further defining housekeeping, or "maintenance," genes Focus on "A compendium of gene expression in normal human tissues". Physiol Genomics, 2001, 7(2): 95-96. | [3] | Zhu J, He FH, Hu SN, Yu J. On the nature of human housekeeping genes. Trends Genet, 2008, 24(10): 481-484. | [4] | Thellin O, Zorzi W, Lakaye B, De Borman B, Coumans B, Hennen G, Grisar T, Igout A, Heinen E. Housekeeping genes as internal standards: use and limits. J Biotechnol, 1999, 75(2-3): 291-295. | [5] | Robinson MD, Oshlack A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol, 2010, 11(3): R25. | [6] | Dheda K, Huggett JF, Bustin SA, Johnson MA, Rook G, Zumla A. Validation of housekeeping genes for normalizing RNA expression in real-time PCR. BioTechniques, 2004, 37(1): 112-119. | [7] | Rubie C, Kempf K, Hans J, Su TF, Tilton B, Georg T, Brittner B, Ludwig B, Schilling M. Housekeeping gene variability in normal and cancerous colorectal, pancreatic, esophageal, gastric and hepatic tissues. Mol Cell Probes, 2005, 19(2): 101-109. | [8] | Vandesompele J, Preter KD, Pattyn F, Poppe B, Van Roy N, Paepe AD, Speleman F. Accurate normalization of real- time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol, 2002, 3(7): research0034. | [9] | Vinogradov AE. Compactness of human housekeeping genes: selection for economy or genomic design. Trends Genet, 2004, 20(5): 248-253. | [10] | Carmel L, Koonin EV. A universal nonmonotonic relationship between gene compactness and expression levels in multicellular eukaryotes. Genome Biol Evol, 2009, 1: 382-390. | [11] | Castillo-Davis CI, Mekhedov SL, Hartl DL, Koonin EV, Kondrashov FA. Selection for short introns in highly expressed genes. Nat Genet, 2002, 31(4): 415-418. | [12] | Farré D, Bellora N, Mularoni L, Messeguer X, Albà MM. Housekeeping genes tend to show reduced upstream sequence conservation. Genome Biol, 2007, 8(7): R140. | [13] | Lawson MJ, Zhang LQ. Housekeeping and tissue-specific genes differ in simple sequence repeats in the 5′-UTR region. Gene, 2008, 407(1-2): 54-62. | [14] | Lehner B, Fraser AG. Protein domains enriched in mammalian tissue-specific or widely expressed genes. Trends Genet, 2004, 20(10): 468-472. | [15] | Bellora N, Farré D, Albà MM. Positional bias of general and tissue-specific regulatory motifs in mouse gene promoters. BMC Genomics, 2007, 8: 459. | [16] | Hsiao LL, Dangond F, Yoshida T, Hong R, Jensen RV, Misra J, Dillon W, Lee KF, Clark KE, Haverty P, Weng ZP, Mutter GL, Frosch MP, Macdonald ME, Milford EL, Crum CP, Bueno R, Pratt RE, Mahadevappa M, Warrington JA, Stephanopoulos G, Stephanopoulos G, Gullans SR. A compendium of gene expression in normal human tissues. Physiol Genomics, 2001, 7(2): 97-104. | [17] | Velculescu VE, Madden SL, Zhang L, Lash AE, Yu J, Rago C, Lal A, Wang CJ, Beaudry GA, Ciriello KM, Cook BP, Dufault MR, Ferguson AT, Gao Y, He TC, Hermeking H, Hiraldo SK, Hwang PM, Lopez MA, Luderer HF, Mathews B, Petroziello JM, Polyak K, Zawel L, Zhang W, Zhang XM, Zhou W, Haluska FG, Jen J, Sukumar S, Landes GM, Riggins GJ, Vogelstein B, Kinzler KW. Analysis of human transcriptomes. Nat Genet, 1999, 23(4): 387-388. | [18] | Warrington JA, Nair A, Mahadevappa M, Tsyganskaya M. Comparison of human adult and fetal expression and identification of 535 housekeeping/maintenance genes. Physiol Genomics, 2000, 2(3): 143-147. | [19] | Eisenberg E, Levanon EY. Human housekeeping genes, revisited. Trends Genet, 2013, 29(10): 569-574. | [20] | Ma LN, Cui P, Zhu J, Zhang ZH, Zhang Z. Translational selection in human: more pronounced in housekeeping genes. Biol Direct, 2014, 9: 17. | [21] | Cui P, Lin Q, Ding F, Hu SN, Yu J. The transcript-centric mutations in human genomes. Genomic Proteomics Bioinformatics, 2012, 10(1): 11-22. | [22] | Kapranov P, Willingham AT, Gingeras TR. Genome-wide transcription and the implications for genomic organization. Nat Rev Genet, 2007, 8(6): 413-423. | [23] | Nygard AB, J?rgensen CB, Cirera S, Fredholm M. Selection of reference genes for gene expression studies in pig tissues using SYBR green qPCR. BMC Mol Biol, 2007, 8: 67. | [24] | Nesvadbová M, Knoll A. Evaluation of reference genes for gene expression studies in pig muscle tissue by real-time PCR. Czech J Anim Sci, 2011, 56(5): 213-216. | [25] | Kok JBD, Roelofs RW, Giesendorf BA, Pennings JL, Waas ET, Feuth T, Swinkels DW, Span PN. Normalization of gene expression measurements in tumor tissues: comparison of 13 endogenous control genes. Lab Invest, 2005, 85(1): 154-159. | [26] | Goossens K, Van Poucke M, Van Soom A, Vandesompele J, Van Zeveren A, Peelman LJ. Selection of reference genes for quantitative real-time PCR in bovine preimplantation embryos. BMC Dev Biol, 2005, 5: 27. | [27] | Ohl F, Jung M, Xu CL, Stephan C, Rabien A, Burkhardt M, Nitsche A, Kristiansen G, Loening SA, Radoni? A, Jung K. Gene expression studies in prostate cancer tissue: which reference gene should be selected for normalization. J Mol Med, 2005, 83(12): 1014-1024. | [28] | Purohit GK, Mahanty A, Mohanty BP, Mohanty S. Evaluation of housekeeping genes as references for quantitative real-time PCR analysis of gene expression in the murrel Channa striatus under high-temperature stress. Fish Physiol Biochem, 2016, 42(1): 125-135. | [29] | Rosic NN, Pernice M, Rodriguez-Lanetty M, Hoegh- Guldberg O. Validation of housekeeping genes for gene expression studies in Symbiodinium exposed to thermal and light stress. Mar Biotechnol, 2011, 13(3): 355-365. | [30] | Kar P, Chawla H, Saha S, Tandon N, Goswami R. Identification of reference housekeeping-genes for mRNA expression studies in patients with type 1 diabetes. Mol Cell Biochem, 2016, 417(1-2): 49-56. | [31] | Tilli TM, Castro CDS, Tuszynski JA, Carels N. A strategy to identify housekeeping genes suitable for analysis in breast cancer diseases. BMC Genomics, 2016, 17: 639. | [32] | Brattelid T, Winer LH, Levy FO, Liest?l K, Sejersted OM, Andersson KB. Reference gene alternatives to Gapdh in rodent and human heart failure gene expression studies. BMC Mol Biol, 2010, 11: 22. | [33] | Kozera B, Rapacz M. Reference genes in real-time PCR. J Appl Genet, 2013, 54(4): 391-406. | [34] | Barber RD, Harmer DW, Coleman RA, Clark BJ. GAPDH as a housekeeping gene: analysis of GAPDH mRNA expression in a panel of 72 human tissues. Physiol Genomics, 2005, 21(3): 389-395. | [35] | Lee PD, Sladek R, Greenwood CMT, Hudson TJ. Control genes and variability: absence of ubiquitous reference transcripts in diverse mammalian expression studies. Genome Res, 2002, 12(2): 292-297. | [36] | de Jonge HJM, Fehrmann RSN, de Bont ESJM, Hofstra RMW, Gerbens F, Kamps WA, de Vries EGE, van der Zee AGJ, te Meerman GJ, Ter Elst A. Evidence based selection of housekeeping genes. PLoS One, 2007, 2(9): e898. | [37] | Paolacci AR, Tanzarella OA, Porceddu E, Ciaffi M. Identification and validation of reference genes for quantitative RT-PCR normalization in wheat. BMC Mol Biol, 2009, 10: 11. | [38] | Andersen CL, Jensen JL, ?rntoft TF. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res, 2004, 64(15): 5245-5250. | [39] | Hitt E. BUSINESS OFFICE FEATURE: microarray technologies: bench to bedside. Science, 2007, 317(5841): 1101-1106. | [40] | Kooperberg C, Fazzio TG, Delrow JJ, Tsukiyama T. Improved background correction for spotted DNA microarrays. J Comput Biol, 2002, 9(1): 55-66. | [41] | Kerr MK, Churchill GA. Experimental design for gene expression microarrays. Biostatistics, 2001, 2(2): 183-201. | [42] | Tseng GC, Oh MK, Rohlin L, Liao JC, Wong WH. Issues in cDNA microarray analysis: quality filtering, channel normalization, models of variations and assessment of gene effects. Nucleic Acids Res, 2001, 29(12): 2549-2557. | [43] | Quackenbush J. Microarray data normalization and transformation. Nat Genet, 2002, 32 Suppl: 496-501. | [44] | Yang YH, Dudoit S, Luu P, Lin DM, Peng V, Ngai J, Speed TP. Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res, 2002, 30(4): e15. | [45] | Kouadjo KE, Nishida Y, Cadrin-Girard JF, Yoshioka M, St-Amand J. Housekeeping and tissue-specific genes in mouse tissues. BMC Genomics, 2007, 8: 127. | [46] | Chang CW, Cheng WC, Chen CR, Shu WY, Tsai ML, Huang CL, Hsu IC. Identification of human housekeeping genes and tissue-selective genes by microarray meta-analysis. PLoS One, 2011, 6(7): e22859. | [47] | Zhu J, He FH, Song SH, Wang J, Yu J. How many human genes can be defined as housekeeping with current expression data. BMC Genomics, 2008, 9: 172. | [48] | Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP. Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res, 2003, 31(4): e15. | [49] | Adams MD, Kelley JM, Gocayne JD, Dubnick M, Polymeropoulos MH, Xiao H, Merril CR, Wu A, Olde B, Moreno RF. Complementary DNA sequencing: expressed sequence tags and human genome project. Science, 1991, 252(5013): 1651-1656. | [50] | White JA, Todd J, Newman T, Focks N, Girke T, de Ilárduya OM, Jaworski JG, Ohlrogge JB, Benning C. A new set of Arabidopsis expressed sequence tags from developing seeds. The metabolic pathway from carbohydrates to seed oil. Plant Physiol, 2000, 124(4): 1582-1594. | [51] | Wilhelm BT, Landry JR. RNA-Seq-quantitative measurement of expression through massively parallel RNA-sequencing. Methods, 2009, 48(3): 249-257. | [52] | Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol, 2010, 11: R106. | [53] | Dillies MA, Rau A, Aubert J, Hennequet-Antier C, Jeanmougin M, Servant N, Keime C, Marot G, Castel D, Estelle J, Guernec G, Jagla B, Jouneau L, Laloe D, Le GC, Schaeffer B, Le CS, Guedj M, Jaffrezic F. A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis. Brief Bioinform, 2013, 14(6): 671-683. | [54] | Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods, 2008, 5(7): 621-628. | [55] | Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet, 2009, 10(1): 57-63. | [56] | Johnson JM, Castle J, Garrett-Engele P, Kan ZY, Loerch PM, Armour CD, Santos R, Schadt EE, Stoughton R, Shoemaker DD. Genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays. Science, 2003, 302(5653): 2141-2144. | [57] | Modrek B, Lee C. A genomic view of alternative splicing. Nat Genet, 2002, 30(1): 13-19. | [58] | Fu X, Fu N, Guo S, Yan Z, Xu Y, Hu H, Menzel C, Chen W, Li YX, Zeng R, Khaitovich P. Estimating accuracy of RNA-Seq and microarrays with proteomics. BMC Genomics, 2009, 10: 161. | [59] | Jeong JK, Kang MH, Gurunathan S, Cho SG, Park C, Seo HG, Kim JH. Evaluation of reference genes in mouse preimplantation embryos for gene expression studies using real-time quantitative RT-PCR (RT-qPCR). BMC Res Notes, 2014, 7: 675. | [60] | Nygard AB, J?rgensen CB, Cirera S, Fredholm M. Selection of reference genes for gene expression studies in pig tissues using SYBR green qPCR. BMC Mol Biol, 2007, 8: 67. | [61] | Tang FC, Barbacioru C, Wang YZ, Nordman E, Lee C, Xu N, Wang XH, Bodeau J, Tuch BB, Siddiqui A, Lao KQ, Surani MA. mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods, 2009, 6(5): 377-382. |
|