[1] | Eisenberg E, Levanon EY. Human housekeeping genes are compact. Trends Genet, 2003, 19(7): 362-365. | [2] | Butte AJ, Dzau VJ, Glueck SB. Further defining housekeeping, or "maintenance," genes Focus on "A compendium of gene expression in normal human tissues". Physiol Genomics, 2001, 7(2): 95-96. | [3] | Zhu J, He FH, Hu SN, Yu J. On the nature of human housekeeping genes. Trends Genet, 2008, 24(10): 481-484. | [4] | Thellin O, Zorzi W, Lakaye B, De Borman B, Coumans B, Hennen G, Grisar T, Igout A, Heinen E. Housekeeping genes as internal standards: use and limits. J Biotechnol, 1999, 75(2-3): 291-295. | [5] | Robinson MD, Oshlack A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol, 2010, 11(3): R25. | [6] | Dheda K, Huggett JF, Bustin SA, Johnson MA, Rook G, Zumla A. Validation of housekeeping genes for normalizing RNA expression in real-time PCR. BioTechniques, 2004, 37(1): 112-119. | [7] | Rubie C, Kempf K, Hans J, Su TF, Tilton B, Georg T, Brittner B, Ludwig B, Schilling M. Housekeeping gene variability in normal and cancerous colorectal, pancreatic, esophageal, gastric and hepatic tissues. Mol Cell Probes, 2005, 19(2): 101-109. | [8] | Vandesompele J, Preter KD, Pattyn F, Poppe B, Van Roy N, Paepe AD, Speleman F. Accurate normalization of real- time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol, 2002, 3(7): research0034. | [9] | Vinogradov AE. Compactness of human housekeeping genes: selection for economy or genomic design. Trends Genet, 2004, 20(5): 248-253. | [10] | Carmel L, Koonin EV. A universal nonmonotonic relationship between gene compactness and expression levels in multicellular eukaryotes. Genome Biol Evol, 2009, 1: 382-390. | [11] | Castillo-Davis CI, Mekhedov SL, Hartl DL, Koonin EV, Kondrashov FA. Selection for short introns in highly expressed genes. Nat Genet, 2002, 31(4): 415-418. | [12] | Farré D, Bellora N, Mularoni L, Messeguer X, Albà MM. Housekeeping genes tend to show reduced upstream sequence conservation. Genome Biol, 2007, 8(7): R140. | [13] | Lawson MJ, Zhang LQ. Housekeeping and tissue-specific genes differ in simple sequence repeats in the 5′-UTR region. Gene, 2008, 407(1-2): 54-62. | [14] | Lehner B, Fraser AG. Protein domains enriched in mammalian tissue-specific or widely expressed genes. Trends Genet, 2004, 20(10): 468-472. | [15] | Bellora N, Farré D, Albà MM. Positional bias of general and tissue-specific regulatory motifs in mouse gene promoters. BMC Genomics, 2007, 8: 459. |
|
[1] |
王舜泽, 江丰, 朱东丽, 杨铁林, 郭燕. Hi-C技术在三维基因组学和疾病致病机理研究中的应用[J]. 遗传, 2023, 45(4): 279-294. |
[2] |
韩熙, 罗富成. 单细胞转录组测序在少突胶质谱系细胞异质性与神经系统疾病中的应用[J]. 遗传, 2023, 45(3): 198-211. |
[3] |
徐思远, 寿佳, 吴强. HS5-1增强子eRNA PEARL对原钙粘蛋白α基因簇的表达调控[J]. 遗传, 2022, 44(8): 695-764. |
[4] |
赵岩, 王晨鑫, 杨天明, 李春爽, 张丽宏, 杜冬妮, 王若曦, 王静, 魏民, 巴雪青. DNA氧化损伤8-羟鸟嘌呤与肿瘤的发生发展[J]. 遗传, 2022, 44(6): 466-477. |
[5] |
朱前彬, 甘志承, 李晓翠, 张英杰, 赵合明, 黄先忠. 小鼠耳芥MAPKKK基因家族全基因组鉴定及进化与表达[J]. 遗传, 2022, 44(11): 1044-1055. |
[6] |
周聪, 周强伟, 成盛, 李国亮. CTCF在介导三维基因组形成及调控基因表达中的研究进展[J]. 遗传, 2021, 43(9): 816-821. |
[7] |
徐海冬, 宁博林, 牟芳, 李辉, 王宁. 选择性多聚腺苷酸化的生物学效应及其调控机制研究进展[J]. 遗传, 2021, 43(1): 4-15. |
[8] |
王涛涛, 杨勇, 魏唯, 林辰涛, 马留银. 互花米草NAC转录因子家族的鉴定与表达分析[J]. 遗传, 2020, 42(2): 194-211. |
[9] |
陈会友, 张建敏, 李柏森, 邓永琳, 张龚炜. 犏牛雄性不育的减数分裂基因表达与表观遗传调控研究进展[J]. 遗传, 2020, 42(11): 1081-1092. |
[10] |
高晓萌, 张治华. 生物大分子“液-液相分离”调控染色质三维空间结构和功能[J]. 遗传, 2020, 42(1): 45-56. |
[11] |
禹奇超,宋彬,邹轩轩,王岭,刘德权,李波,马昆. 乳腺癌癌旁组织特异性表达基因分析[J]. 遗传, 2019, 41(7): 625-633. |
[12] |
石田培,张莉. 全转录组学在畜牧业中的应用[J]. 遗传, 2019, 41(3): 193-205. |
[13] |
宁椿游,何梦楠,唐茜子,朱庆,李明洲,李地艳. 基于Hi-C技术哺乳动物三维基因组研究进展[J]. 遗传, 2019, 41(3): 215-233. |
[14] |
丁庆倩,王小婷,胡利琴,齐欣,葛林豪,徐伟亚,徐兆师,周永斌,贾冠清,刁现民,闵东红,马有志,陈明. 谷子MYB类转录因子SiMYB42提高转基因拟南芥低氮胁迫耐性[J]. 遗传, 2018, 40(4): 327-338. |
[15] |
李迎侠, 张婷婷, 马磊. 天然嵌合基因的结构特性及其对基因设计的启示[J]. 遗传, 2018, 40(2): 135-144. |
|