[1] | Gardner WD, Osburn WA. Anatomy of the Human Body. 3rd ed. Philadelphia: Saunders, 1978. | [2] | van der Flier LG, Clevers H. Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu Rev Physiol, 2009, 71(1): 241-260. | [3] | Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin, 2015, 65(2): 87-108. | [4] | Yu FX, Zhao B, Guan KL. Hippo pathway in organ size control, tissue homeostasis, and cancer. Cell, 2015, 163(4): 811-828. | [5] | Wang Y, Yu AJ, Yu FX. The Hippo pathway in tissue homeostasis and regeneration. Protein Cell, 2017, doi: 10.1007/s13238-017-0371-0. | [6] | Heath JP. Epithelial cell migration in the intestine. Cell Biol Int, 1996, 20(2): 139-146. | [7] | Sato T, Van Es JH, Snippert HJ, Stange DE, Vries RG, van den Born M, Barker N, Shroyer NF, van de Wetering M, Clevers H. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature, 2011, 469(7330): 415-418. | [8] | Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE, van Es JH, Abo A, Kujala P, Peters PJ, Clevers H. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature, 2009, 459(7244): 262-265. | [9] | Mu?oz J, Stange DE, Schepers AG, van de Wetering M, Koo BK, Itzkovitz S, Volckmann R, Kung KS, Koster J, Radulescu S, Myant K, Versteeg R, Sansom OJ, van Es JH, Barker N, van Oudenaarden A, Mohammed S, Heck AJR, Clevers H. The Lgr5 intestinal stem cell signature: Robust expression of proposed quiescent ‘+4’ cell markers. EMBO J, 2012, 31(14): 3079-3091. | [10] | Tian H, Biehs B, Warming S, Leong KG, Rangell L, Klein OD, de Sauvage FJ. A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable. Nature, 2011, 478(7368): 255-259. | [11] | Korinek V, Barker N, Moerer P, Van Donselaar E, Huls G, Peters PJ, Clevers H. Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Tcf-4. Nat Genet, 1998, 19(4): 379-383. | [12] | Pinto D, Gregorieff A, Begthel H, Clevers H. Canonical wnt signals are essential for homeostasis of the intestinal epithelium. Genes Dev, 2003, 17(14): 1709-1713. | [13] | Fevr T, Robine S, Louvard D, Huelsken J. Wnt/β-catenin is essential for intestinal homeostasis and maintenance of intestinal stem cells. Mol Cell Biol, 2007, 27(21): 7551-7559. | [14] | Kim KA, Kakitani M, Zhao JS, Oshima T, Tang T, Binnerts M, Liu Y, Boyle B, Park E, Emtage P, Funk WD, Tomizuka K. Mitogenic influence of human R-spondin1 on the intestinal epithelium. Science, 2005, 309(5738): 1256-1259. | [15] | Fre S, Huyghe M, Mourikis P, Robine S, Louvard D, Artavanis-Tsakonas S. Notch signals control the fate of immature progenitor cells in the intestine. Nature, 2005, 435(7044): 964-968. | [16] | Milano J, McKay J, Dagenais C, Foster-Brown L, Pognan F, Gadient R, Jacobs RT, Zacco A, Greenberg B, Ciaccio PJ. Modulation of notch processing by γ-secretase inhibitors causes intestinal goblet cell metaplasia and induction of genes known to specify gut secretory lineage differentiation. Toxicol Sci, 2004, 82(1): 341-358. | [17] | Wong GT, Manfra D, Poulet FM, Zhang Q, Josien H, Bara T, Engstrom L, Pinzon-Ortiz M, Fine JS, Lee HJJ, Zhang LL, Higgins GA, Parker EM. Chronic treatment with the γ-secretase inhibitor ly-411, 575 inhibits β-amyloid peptide production and alters lymphopoiesis and intestinal cell differentiation. J Biol Chem, 2004, 279(13): 12876-12882. | [18] | Yu FX, Meng ZP, Plouffe SW, Guan KL. Hippo pathway regulation of gastrointestinal tissues. Annu Rev Physiol, 2015, 77(1): 201-227. | [19] | Heallen T, Zhang M, Wang J, Bonilla-Claudio M, Klysik E, Johnson RL, Martin JF. Hippo pathway inhibits wnt signaling to restrain cardiomyocyte proliferation and heart size. Science, 2011, 332(6028): 458-461. | [20] | Azzolin L, Zanconato F, Bresolin S, Forcato M, Basso G, Bicciato S, Cordenonsi M, Piccolo S. Role of taz as mediator of wnt signaling. Cell, 2012, 151(7): 1443-1456. | [21] | Imajo M, Miyatake K, Iimura A, Miyamoto A, Nishida E. A molecular mechanism that links hippo signalling to the inhibition of wnt/β-catenin signalling. EMBO J, 2012, 31(5): 1109-1122. | [22] | Park HW, Kim YC, Yu B, Moroishi T, Mo JS, Plouffe SW, Meng ZP, Lin KC, Yu FX, Alexander CM, Wang CY, Guan KL. Alternative wnt signaling activates YAP/TAZ. Cell, 2015, 162(4): 780-794. | [23] | Zhou DW, Zhang YY, Wu HT, Barry E, Yin Y, Lawrence E, Dawson D, Willis JE, Markowitz SD, Camargo FD, Avruch J. Mst1 and Mst2 protein kinases restrain intestinal stem cell proliferation and colonic tumorigenesis by inhibition of yes-associated protein (YAP) overabundance. Proc Natl Acad Sci USA, 2011, 108(49): E1312-E1320. | [24] | Camargo FD, Gokhale S, Johnnidis JB, Fu DD, Bell GW, Jaenisch R, Brummelkamp TR. YAP1 increases organ size and expands undifferentiated progenitor cells. Curr Biol, 2007, 17(23): 2054-2060. | [25] | Barry ER, Morikawa T, Butler BL, Shrestha K, de la Rosa R, Yan KS, Fuchs CS, Magness ST, Smits R, Ogino S, Kuo CJ, Camargo FD. Restriction of intestinal stem cell expansion and the regenerative response by YAP. Nature, 2013, 493(7430): 106-110. | [26] | Gregorieff A, Liu Y, Inanlou MR, Khomchuk Y, Wrana JL. YAP-dependent reprogramming of Lgr5 + stem cells drives intestinal regeneration and cancer. Nature, 2015, 526(7575): 715-718. | [27] | Cai J, Zhang NL, Zheng YG, de Wilde RF, Maitra A, Pan DJ. The hippo signaling pathway restricts the oncogenic potential of an intestinal regeneration program. Genes Dev, 2010, 24(21): 2383-2388. | [28] | Oudhoff MJ, Freeman SA, Couzens AL, Antignano F, Kuznetsova E, Min PH, Northrop JP, Lehnertz B, Barsyte-Lovejoy D, Vedadi M, Arrowsmith CH, Nishina H, Gold MR, Rossi FMV, Gingras AC, Zaph C. Control of the hippo pathway by Set7-dependent methylation of YAP. Dev Cell, 2013, 26(2): 188-194. | [29] | Imajo M, Ebisuya M, Nishida E. Dual role of YAP and TAZ in renewal of the intestinal epithelium. Nat Cell Biol, 2014, 17(1): 7-19. | [30] | Camargo FD, Gokhale S, Johnnidis JB, Fu DD, Bell GW, Jaenisch R, Brummelkamp TR. YAP1 increases organ size and expands undifferentiated progenitor cells. Curr Biol, 2007, 17(23): 2094. | [31] | Lian I, Kim J, Okazawa H, Zhao JG, Zhao B, Yu JD, Chinnaiyan A, Israel MA, Goldstein LSB, Abujarour R, Ding S, Guan KL. The role of YAP transcription coactivator in regulating stem cell self-renewal and differentiation. Genes Dev, 2010, 24(11): 1106-1118. | [32] | Tamm C, B?wer N, Annerén C. Regulation of mouse embryonic stem cell self-renewal by a YES-YAP-TEAD2 signaling pathway downstream of LIF. J Cell Sci, 2011, 124(7): 1136-1144. | [33] | Varelas X, Sakuma R, Samavarchi-Tehrani P, Peerani R, Rao BM, Dembowy J, Yaffe MB, Zandstra PW, Wrana JL. TAZ controls smad nucleocytoplasmic shuttling and regulates human embryonic stem-cell self-renewal. Nat Cell Biol, 2008, 10(7): 837-848. | [34] | Fan FQ, He ZX, Kong LL, Chen QH, Yuan Q, Zhang SH, Ye JJ, Liu H, Sun XF, Geng J, Yuan LZ, Hong LX, Xiao C, Zhang WJ, Sun XH, Li YZ, Wang P, Huang LH, Wu XR, Ji ZL, Wu Q, Xia NS, Gray NS, Chen LF, Yun CH, Deng XM, Zhou DW. Pharmacological targeting of kinases MST1 and MST2 augments tissue repair and regeneration. Sci Transl Med, 2016, 8(352): 352ra108. | [35] | Zhou DW, Zhang YY, Wu HT, Barry E, Yin Y, Lawrence E, Dawson D, Willis JE, Markowitz SD, Camargo FD, Avruch J. Mst1 and Mst2 protein kinases restrain intestinal stem cell proliferation and colonic tumorigenesis by inhibition of yes-associated protein (Yap) overabundance. Proc Natl Acad Sci USA, 2011, 108(49): E1312-E1320. | [36] | Steinhardt AA, Gayyed MF, Klein AP, Dong JX, Maitra A, Pan DJ, Montgomery EA, Anders RA. Expression of yes-associated protein in common solid tumors. Hum Pathol, 2008, 39(11): 1582-1589. | [37] | Wang LJ, Shi SJ, Guo ZY, Zhang X, Han SX, Yang AG, Wen WH, Zhu Q. Overexpression of YAP and TAZ is an independent predictor of prognosis in colorectal cancer and related to the proliferation and metastasis of colon cancer cells. PLoS One, 2013, 8(6): e65539. | [38] | Wierzbicki PM. Underexpression of LATS1 TSG in colorectal cancer is associated with promoter hypermethylation. World J Gastroenterol, 2013, 19(27): 4363-4373. | [39] | Konsavage WM Jr, Kyler SL, Rennoll SA, Jin G, Yochum GS. Wnt/β-catenin signaling regulates yes-associated protein (YAP) gene expression in colorectal carcinoma cells. J Biol Chem, 2012, 287(15): 11730-11739. | [40] | Jiao S, Li CC, Hao Q, Miao HF, Zhang L, Li L, Zhou ZC. VGLL4 targets a TCF4-TEAD4 complex to coregulate wnt and hippo signalling in colorectal cancer. Nat Commun, 2017, 8: 14058. | [41] | Guo PD, Lu XX, Gan WJ, Li XM, He XS, Zhang S, Ji QH, Zhou F, Cao Y, Wang JR, Li JM, Wu H. RARγ downregulation contributes to colorectal tumorigenesis and metastasis by derepressing the Hippo-Yap pathway. Cancer Res, 2016, 76(13): 3813-3825. | [42] | Rosenbluh J, Nijhawan D, Cox AG, Li XN, Neal JT, Schafer EJ, Zack TI, Wang XX, Tsherniak A, Schinzel AC, Shao DD, Schumacher SE, Weir BA, Vazquez F, Cowley GS, Root DE, Mesirov JP, Beroukhim R, Kuo CJ, Goessling W, Hahn WC. β-catenin-driven cancers require a YAP1 transcriptional complex for survival and tumorigenesis. Cell, 2012, 151(7): 1457-1473. | [43] | Park J, Jeong S. Wnt activated β-catenin and YAP proteins enhance the expression of non-coding RNA component of rnase MRP in colon cancer cells. Oncotarget, 2015, 6(33): 34658-34668. | [44] | Oudhoff MJ, Braam MJS, Freeman SA, Wong D, Rattray DG, Wang J, Antignano F, Snyder K, Refaeli I, Hughes MR, McNagny KM, Gold MR, Arrowsmith CH, Sato T, Rossi FMV, Tatlock JH, Owen DR, Brown PJ, Zaph C. SETD7 controls intestinal regeneration and tumorigenesis by regulating Wnt/β-catenin and Hippo/YAP signaling. Dev Cell, 2016, 37(1): 47-57. | [45] | Zhang L, Tang FY, Terracciano L, Hynx D, Kohler R, Bichet S, Hess D, Cron P, Hemmings BA, Hergovich A, Schmitz-Rohmer D. NDR functions as a physiological YAP1 kinase in the intestinal epithelium. Curr Biol, 2015, 25(3): 296-305. | [46] | Kim HB, Kim M, Park YS, Park I, Kim T, Yang SY, Cho CJ, Hwang D, Jung JH, Markowitz SD, Hwang SW, Yang SK, Lim DS, Myung SJ. Prostaglandin E2 activates YAP and a positive-signaling loop to promote colon regeneration after colitis but also carcinogenesis in mice. Gastroenterology, 2017, 152(3): 616-630. | [47] | Powell SM, Zilz N, Beazer-Barclay Y, Bryan TM, Hamilton SR, Thibodeau SN, Vogelstein B, Kinzler KW. APC mutations occur early during colorectal tumorigenesis. Nature, 1992, 359(6392): 235-237. | [48] | Miyoshi Y, Ando H, Nagase H, Nishisho I, Horii A, Miki Y, Mori T, Utsunomiya J, Baba S, Petersen G. Germ-line mutations of the APC gene in 53 familial adenomatous polyposis patients. Proc Natl Acad Sci USA, 1992, 89(10): 4452-4456. | [49] | Cai J, Maitra A, Anders RA, Taketo MM, Pan DJ. β-catenin destruction complex-independent regulation of hippo-YAP signaling by APC in intestinal tumorigenesis. Genes Dev, 2015, 29(14): 1493-1506. | [50] | Azzolin L, Panciera T, Soligo S, Enzo E, Bicciato S, Dupont S, Bresolin S, Frasson C, Basso G, Guzzardo V, Fassina A, Cordenonsi M, Piccolo S. YAP/TAZ incorporation in the β-catenin destruction complex orchestrates the wnt response. Cell, 2014, 158(1): 157-170. | [51] | Micchelli CA, Perrimon N. Evidence that stem cells reside in the adult Drosophila midgut epithelium. Nature, 2006, 439(7075): 475-479. | [52] | Ohlstein B, Spradling A. The adult Drosophila posterior midgut is maintained by pluripotent stem cells. Nature, 2006, 439(7075): 470-474. | [53] | Karpowicz P, Perez J, Perrimon N. The Hippo tumor suppressor pathway regulates intestinal stem cell regeneration. Development, 2010, 137(24): 4135-4145. | [54] | Ren FF, Wang B, Yue T, Yun EY, Ip YT, Jiang J. Hippo signaling regulates Drosophila intestine stem cell proliferation through multiple pathways. Proc Natl Acad Sci USA, 2010, 107(49): 21064-21069. | [55] | Shaw RL, Kohlmaier A, Polesello C, Veelken C, Edgar BA, Tapon N. The hippo pathway regulates intestinal stem cell proliferation during drosophila adult midgut regeneration. Development, 2010, 137(24): 4147-4158. | [56] | Wang C, Yin MX, Wu W, Dong L, Wang SM, Lu Y, Xu JX, Wu WQ, Li S, Zhao Y, Zhang L. Taiman acts as a coactivator of yorkie in the Hippo pathway to promote tissue growth and intestinal regeneration. Cell Discov, 2016, 2: 16006. | [57] | Staley BK, Irvine KD. Warts and yorkie mediate intestinal regeneration by influencing stem cell proliferation. Curr Biol, 2010, 20(17): 1580-1587. | [58] | Li Q, Li SX, Mana-Capelli S, Roth Flach RJ, Danai LV, Amcheslavsky A, Nie YC, Kaneko S, Yao XH, Chen XC, Cotton JL, Mao JH, McCollum D, Jiang J, Czech MP, Xu L, Ip YT. The conserved misshapen-warts-yorkie pathway acts in enteroblasts to regulate intestinal stem cells in Drosophila. Dev Cell, 2014, 31(3): 291-304. | [59] | Huang HL, Li JH, Hu LX, Ge L, Ji HB, Zhao Y, Zhang L. Bantam is essential for Drosophila intestinal stem cell proliferation in response to hippo signaling. Dev Biol, 2014, 385(2): 211-219. | [60] | Jin YY, Xu JJ, Yin MX, Lu Y, Hu LX, Li PX, Zhang P, Yuan ZQ, Ho MS, Ji HB, Zhao Y, Zhang L. Brahma is essential for Drosophila intestinal stem cell proliferation and regulated by Hippo signaling. eLife, 2013, 2: e00999. | [61] | Zhu Y, Li D, Wang YD, Pei CL, Liu S, Zhang L, Yuan ZQ, Zhang P. Brahma regulates the Hippo pathway activity through forming complex with Yki-Sd and regulating the transcription of Crumbs. Cell Signal, 2015, 27(3): 606-613. | [62] | Gjorevski N, Sachs N, Manfrin A, Giger S, Bragina ME, Ordó?ez-Morán P, Clevers H, Lutolf MP. Designer matrices for intestinal stem cell and organoid culture. Nature, 2016, 539(7630): 560-564. | [63] | Cox AG, Hwang KL, Brown KK, Evason KJ, Beltz S, Tsomides A, O'Connor K, Galli GG, Yimlamai D, Chhangawala S, Yuan M, Lien EC, Wucherpfennig J, Nissim S, Minami A, Cohen DE, Camargo FD, Asara JM, Houvras Y, Stainier DYR, Goessling W. Yap reprograms glutamine metabolism to increase nucleotide biosynthesis and enable liver growth. Nat Cell Biol, 2016, 18(8): 886-896. | [64] | Santinon G, Pocaterra A, Dupont S. Control of YAP/TAZ activity by metabolic and nutrient-sensing pathways. Trends Cell Biol, 2016, 26(4): 289-299. | [65] | Vali? K, Talacko P, Grobárová V, ?erny J, Novák P. Shikonin regulates C-MYC and GLUT1 expression through the MST1-YAP1-TEAD1 axis. Exp Cell Res, 2016, 349(2): 273-281. | [66] | Oudhoff MJ, Antignano F, Chenery AL, Burrows K, Redpath SA, Braam MJ, Perona-Wright G, Zaph C. Intestinal epithelial cell-intrinsic deletion of Setd7 identifies role for developmental pathways in immunity to helminth infection. PLoS Pathog, 2016, 12(9): e1005876. |
|