[1] | Varelas X. The Hippo pathway effectors TAZ and YAP in development, homeostasis and disease. Development, 2014, 141(8): 1614-1626. | [2] | Zhao B, Wei XM, Li WQ, Udan RS, Yang Q, Kim J, Xie J, Ikenoue T, Yu JD, Li L, Zheng P, Ye KQ, Chinnaiyan A, Halder G, Lai ZC, Guan KL. Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev, 2007, 21(21): 2747-2761. | [3] | Liu B, Zheng YG, Yin F, Yu JZ, Silverman N, Pan DJ. Toll receptor-mediated Hippo signaling controls innate immunity in Drosophila. Cell, 2016, 164(3): 406-419. | [4] | Zhang L. Control of growth and beyond: a special issue on Hippo signaling. Acta Biochim Biophys Sin (Shanghai), 2015, 47(1): 1. | [5] | Meng ZP, Moroishi T, Mottier-Pavie V, Plouffe S W, Hansen CG, Hong AW, Park HW, Mo JS, Lu WQ, Lu SC, Flores F, Yu FX, Halder G, Guan KL. MAP4K family kinases act in parallel to MST1/2 to activate LATS1/2 in the Hippo pathway. Nat Commun, 2015, 6: 8357. | [6] | Wang GC, Lu X, Dey P, Deng PN, Wu CC, Jiang S, Fang ZN, Zhao K, Konaparthi R, Hua SJ, Zhang JH, Li-Ning-Tapia EM, Kapoor A, Wu CJ, Patel NB, Guo ZL, Ramamoorthy V, Tieu TN, Heffernan T, Zhao D, Shang XY, Khadka S, Hou PP, Hu BL, Jin EJ, Yao WT, Pan XL, Ding ZH, Shi YX, Li LR, Chang Q, Troncoso P, Logothetis CJ, McArthur MJ, Chin L, Wang YA, DePinho RA. Targeting YAP-dependent MDSC infiltration impairs tumor progression. Cancer Discov, 2016, 6(1): 80-95. | [7] | Yimlamai D, Christodoulou C, Galli GG, Yanger K, Pepe- Mooney B, Gurung B, Shrestha K, Cahan P, Stanger BZ, Camargo FD. Hippo pathway activity influences liver cell fate. Cell, 2014, 157(6): 1324-1338. | [8] | Harvey KF, Zhang MX, Thomas DM. The Hippo pathway and human cancer. Nat Rev Cancer, 2013, 13(4): 246-257. | [9] | Renner O, Fominaya J, Alonso S, Blanco-Aparicio C, Leal JFM, Carnero A. MST1, RanBP2 and eIF4G are new markers for in vivo PI3K activation in murine and human prostate. Carcinogenesis, 2007, 28(7): 1418-1425. | [10] | Bernascone I, Martin-Belmonte F. Crossroads of Wnt and Hippo in epithelial tissues. Trends Cell Biol, 2013, 23(8): 380-389. | [11] | Kim M, Jho EH. Cross-talk between Wnt/β-catenin and Hippo signaling pathways: a brief review. Bmb Rep, 2014, 47(10): 540-545. | [12] | Taniguchi K, Wu LW, Grivennikov SI, de Jong PR, Lian I, Yu FX, Wang KP, Ho SB, Boland BS, Chang JT, Sandborn WJ, Hardiman G, Raz E, Maehara Y, Yoshimura A, Zucman-Rossi J, Guan KL, Karin M. A gp130-Src-YAP module links inflammation to epithelial regeneration. Nature, 2015, 519(7541): 57-62. | [13] | Ling P, Lu TJ, Yuan CJ, Lai MD. Biosignaling of mammalian Ste20-related kinases. Cell Signal, 2008, 20(7): 1237-1247. | [14] | Du XR, Yu A, Tao WF. The non-canonical Hippo/Mst pathway in lymphocyte development and functions. Acta Biochim Biophys Sin (Shanghai), 2015, 47(1): 60-64. | [15] | Katagiri K, Imamura M, Kinashi T. Spatiotemporal regulation of the kinase MST1 by binding protein RAPL is critical for lymphocyte polarity and adhesion. Nat Immunol, 2006, 7(9): 919-928. | [16] | Katagiri K, Katakai T, Ebisuno Y, Ueda Y, Okada T, Kinashi T. MST1 controls lymphocyte trafficking and interstitial motility within lymph nodes. Embo J, 2009, 28(9): 1319-1331. | [17] | Calandra T, Roger T. Macrophage migration inhibitory factor: a regulator of innate immunity. Nat Rev Immunol, 2003, 3(10): 791-800. | [18] | Yan ZQ, Hansson GK. Innate immunity, macrophage activation, and atherosclerosis. Immunol Rev, 2007, 219(1): 187-203. | [19] | Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol, 2004, 4(7): 499-511. | [20] | Yamamoto M, Sato S, Hemmi H, Hoshino K, Kaisho T, Sanjo H, Takeuchi O, Sugiyama M, Okabe M, Takeda K, Akira S. Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science, 2003, 301(5633): 640-643. | [21] | Matsushima H, Yamada N, Matsue H, Shimada S. TLR3-, TLR7-, and TLR9-mediated production of proinflammatory cytokines and chemokines from murine connective tissue type skin-derived mast cells but not from bone marrow-derived mast cells. J Immunol, 2004, 173(1): 531-541. | [22] | Wang L, Luo JY, Li BC, Tian XY, Chen LJ, Huang YH, Liu J, Deng D, Lau CW, Wan S, Ai D, Mak KK, Tong KK, Kwan KM, Wang NP, Chiu JJ, Zhu Y, Huang Y. Integrin-YAP/TAZ-JNK cascade mediates atheroprotective effect of unidirectional shear flow. Nature, 2016, 540(7): 579-582 | [23] | Yu FX, Zhao B, Panupinthu N, Jewell JL, Lian I, Wang LH, Zhao JG, Yuan HX, Tumaneng K, Li HR, Fu XD, Mills GB, Guan KL. Regulation of the Hippo-YAP pathway by G-protein-coupled receptor signaling. Cell, 2012, 150(4): 780-791. | [24] | Boro M, Singh V, Balaji KN. Mycobacterium tubercu losis-triggered Hippo pathway orchestrates CXCL1/2 expression to modulate host immune responses. Sci Rep, 2016, 6: 37695. | [25] | Geng J, Sun XF, Wang P, Zhang SH, Wang XZ, Wu HT, Hong LX, Xie CC, Li X, Zhao H, Liu QX, Jiang MT, Chen QH, Zhang JJ, Li Y, Song SY, Wang HR, Zhou RB, Johnson RL, Chien KY, Lin SC, Han JH, Avruch J, Chen LF, Zhou DW. Kinases MST1 and Mst2 positively regulate phagocytic induction of reactive oxygen species and bactericidal activity. Nat Immunol, 2015, 16(11): 1142-1152. | [26] | Li WY, Xiao J, Zhou X, Xu M, Hu CB, Xu XY, Lu Y, Liu C, Xue SJ, Nie L, Zhang HB, Li ZQ, Zhang YB, Ji F, Hui LJ, Tao WF, Wei B, Wang HY. STK4 regulates TLR pathways and protects against chronic inflammation- related hepatocellular carcinoma. J Clin Invest, 2015, 125(11): 4239-4254. | [27] | Liu G, Park YJ, Tsuruta Y, Lorne E, Abraham E. p53 Attenuates lipopolysaccharide-induced NF-κB activation and acute lung injury. J Immunol, 2009, 182(8): 5063-5071. | [28] | Lowe JM, Menendez D, Bushel PR, Shatz M, Kirk ELK, Troester MA, Garantziotis S, Fessler MB, Resnick MA. p53 and NF-κB coregulate proinflammatory gene responses in human macrophages. Cancer Res, 2014, 74(8): 2182-2192. | [29] | Nehme NT, Schmid JP, Debeurme F, André-Schmutz I, Lim A, Nitschke P, Rieux-Laucat F, Lutz P, Picard C, Mahlaoui N, Fischer A, de Saint Basile G. MST1 mutations in autosomal recessive primary immunodeficiency characterized by defective naive T-cell survival. Blood, 2012, 119(15): 3458-3468. | [30] | Abdollahpour H, Appaswamy G, Kotlarz D, Diestelhorst J, Beier R, Sch?ffer AA, Gertz EM, Schambach A, Kreipe HH, Pfeifer D, Engelhardt KR, Rezaei N, Grimbacher B, Lohrmann S, Sherkat R, Klein C. The phenotype of human STK4 deficiency. Blood, 2012, 119(15): 3450-3457. | [31] | Makarova M, Krettek A, Valkov MY, Grjibovski AM. Hepatitis B and C viruses and survival from hepatocellular carcinoma in the Arkhangelsk region: a Russian registry-based study. Int J Circumpolar Health, 2013, 72(1): 20282. | [32] | Moudgil V, Redhu D, Dhanda S, Singh J. A review of molecular mechanisms in the development of hepatocellular carcinoma by aflatoxin and hepatitis B and C viruses. J Environ Pathol Toxicol Oncol, 2013, 32(2): 165-175. | [33] | Pellegris G, Ravagnani F, Notti P, Fissi S, Lombardo C. B and C hepatitis viruses, HLA-DQ1 and -DR3 alleles and autoimmunity in patients with hepatocellular carcinoma. J Hepatol, 2002, 36(4): 521-526. | [34] | Perry AK, Chen G, Zheng DH, Tang H, Cheng GH. The host type I interferon response to viral and bacterial infections. Cell Res, 2005, 15(6): 407-422. | [35] | Stifter SA, Feng CG. Interfering with immunity: detrimental role of type I IFNs during infection. J Immunol, 2015, 194(6): 2455-2465. | [36] | Takeyasu M, Akuta N, Suzuki F, Seko Y, Kawamura Y, Sezaki H, Suzuki Y, Hosaka T, Kobayashi M, Kobayashi M, Arase Y, Ikeda K, Kumada H. Long-term interferon monotherapy reduces the risk of HCV-associated hepatocellular carcinoma. J Med Virol, 2012, 84(8): 1199-1207. | [37] | Zhai XH, Yu JK, Yang FQ, Zheng S. Identification of a new protein biomarker for colorectal cancer diagnosis. Mol Med Rep, 2012, 6(2): 444-448. | [38] | Babel I, Barderas R, Diaz-Uriarte R, Moreno V, Suarez A, Fernandez-Ace?ero MJ, Salazar R, Capellá G, Casal JI. Identification of MST1/STK4 and SULF1 proteins as autoantibody targets for the diagnosis of colorectal cancer by using phage microarrays. Mol Cell Proteomics, 2011, 10(3): M110.001784. | [39] | Biacchesi S, Mérour E, Lamoureux A, Bernard J, Brémont M. Both STING and MAVS fish orthologs contribute to the induction of interferon mediated by RIG-I. PLoS One, 2012, 7(10): e47737. | [40] | Liu SQ, Cai X, Wu JX, Cong Q, Chen X, Li T, Du FH, Ren JY, Wu YT, Grishin NV, Chen ZJ. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science, 2015, 347(6227): aaa2630. | [41] | Meng FS, Zhou RY, Wu SY, Zhang Q, Jin QH, Zhou Y, Plouffe SW, Liu SD, Song H, Xia ZP, Zhao B, Ye S, Feng XH, Guan KL, Zou J, Xu PL. MST1 shuts off cytosolic antiviral defense through IRF3 phosphorylation. Genes Dev, 2016, 30(9): 1086-1100. | [42] | Méndez-Samperio P. Expression and regulation of chemokines in mycobacterial infection. J Infect, 2008, 57(5): 374-384. | [43] | Lambeth JD. NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol, 2004, 4(3): 181-189. | [44] | Bedard K, Krause KH. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev, 2007, 87(1): 245-313. | [45] | Jiao S, Zhang Z, Li CC, Huang M, Shi ZB, Wang YY, Song XM, Liu H, Li CY, Chen M, Wang WJ, Zhao Y, Jiang ZF, Wang HY, Wong CCL, Wang C, Zhou ZC. The kinase MST4 limits inflammatory responses through direct phosphorylation of the adaptor TRAF6. Nat Immunol, 2015, 16(3): 246-257. | [46] | Wang TT, Zhang L, Hu JQ, Duan Y, Zhang MM, Lin J, Man WR, Pan XT, Jiang ZH, Zhang GY, Gao BB, Wang HC, Sun DD. MST1 participates in the atherosclerosis progression through macrophage autophagy inhibition and macrophage apoptosis enhancement. J Mol Cell Cardiol, 2016, 98: 108-116. | [47] | Maejima Y, Kyoi S, Zhai PY, Liu T, Li H, Ivessa A, Sciarretta S, Del Re DP, Zablocki DK, Hsu CP, Lim DS, Isobe M, Sadoshima J. MST1 inhibits autophagy by promoting the interaction between Beclin1 and Bcl-2. Nat Med, 2013, 19(11): 1478-1488. | [48] | Zhang MM, Zhang L, Hu JQ, Lin J, Wang TT, Duan Y, Man WR, Feng JX, Sun L, Jia HB, Li CY, Zhang RQ, Wang HC, Sun DD. MST1 coordinately regulates autophagy and apoptosis in diabetic cardiomyopathy in mice. Diabetologia, 2016, 59(11): 2435-2447. | [49] | Lin J, Zhang L, Zhang MM, Hu JQ, Wang TT, Duan Y, Man WR, Wu B, Feng JX, Sun L, Li CY, Zhang RQ, Wang HC, Sun DD. MST1 inhibits CMECs autophagy and participates in the development of diabetic coronary microvascular dysfunction. Sci Rep, 2016, 6: 34199. | [50] | Hu JQ, Zhang L, Zhao ZJ, Zhang MM, Lin J, Wang JX, Yu WJ, Man WR, Li CY, Zhang RQ, Gao EH, Wang HC, Sun DD. OSM mitigates post-infarction cardiac remodeling and dysfunction by up-regulating autophagy through MST1 suppression. Biochim Biophys Acta, 2016, doi: 10.1016/j.bbadis.2016.11.004. | [51] | Hu JQ, Man WR, Shen M, Zhang MM, Lin J, Wang TT, Duan Y, Li CY, Zhang RQ, Gao EH, Wang HC, Sun DD. Luteolin alleviates post-infarction cardiac dysfunction by up-regulating autophagy through MST1 inhibition. J Cell Mol Med, 2016, 20(1): 147-156. | [52] | Torres-Bacete J, Delgado-Martín C, Gómez-Moreira C, Simizu S, Rodríguez-Fernández JL. The mammalian sterile 20-like 1 kinase controls selective CCR7-dependent functions in human dendritic cells. J Immunol, 2015, 195(3): 973-981. | [53] | Sánchez-Sánchez N, Riol-Blanco L, de la Rosa G, Puig-Kr?ger A, García-Bordas J, Martín D, Longo N, Cuadrado A, Caba?as C, Corbí AL, Sánchez-Mateos P, Rodríguez-Fernández JL. Chemokine receptor CCR7 induces intracellular signaling that inhibits apoptosis of mature dendritic cells. Blood, 2004, 104(3): 619-625. | [54] | De Souza PM, Kankaanranta H, Michael A, Barnes PJ, Giembycz MA, Lindsay MA. Caspase-catalyzed cleavage and activation of MST1 correlates with eosinophil but not neutrophil apoptosis. Blood, 2002, 99(9): 3432-3438. | [55] | Kurz ARM, Pruenster M, Rohwedder I, Ramadass M, Sch?fer K, Harrison U, Gouveia G, Nussbaum C, Immler R, Wiessner JR, Margraf A, Lim DS, Walzog B, Dietzel S, Moser M, Klein C, Vestweber D, Haas R, Catz SD, Sperandio M. MST1-dependent vesicle trafficking regulates neutrophil transmigration through the vascular basement membrane. J Clin Invest, 2016, 126(11): 4125-4139. | [56] | Reszka AA, Halasy-Nagy JM, Masarachia PJ, Rodan GA. Bisphosphonates act directly on the osteoclast to induce caspase cleavage of MST1 kinase during apoptosis. A link between inhibition of the mevalonate pathway and regulation of an apoptosis-promoting kinase. J Biol Chem, 1999, 274(49): 34967-34973. | [57] | Moroishi T, Hayashi T, Pan WW, Fujita Y, Holt MV, Qin J, Carson DA, Guan KL. The hippo pathway kinases LATS1/2 suppress cancer immunity. Cell, 2016, 167(6): 1525. e17-1539.e17. | [58] | Guo XC, Zhao Y, Yan H, Yang YC, Shen SY, Dai XM, Ji XY, Ji FB, Gong XG, Li L, Bai XL, Feng XH, Liang TB, Ji JF, Chen L, Wang HY, Zhao B. Single tumor-initiating cells evade immune clearance by recruiting type II macrophages. Genes Dev, 2017, 31(3): 247-259. | [59] | Zhang Q, Meng FS, Chen SS, Plouffe SW, Wu SY, Liu SD, Li XR, Zhou RY, Wang JX, Zhao B, Liu JM, Qin J, Zou J, Feng XH, Guan KL, Xu PL. Hippo signalling governs cytosolic nucleic acid sensing through YAP/TAZ- mediated TBK1 blockade. Nat Cell Biol, 2017, 19(4): 362-374. | [60] | Wang S, Xie F, Chu F, Zhang ZK, Yang B, Dai T, Gao L, Wang L, Ling L, Jia JL, van Dam H, Zhang L, Zhou FF. YAP antagonizes innate antiviral immunity and is targeted for lysosomal degradation through IKKε-mediated phosphorylation. Nat Immunol, 2017, doi: 10.1038/ni.3744. | [61] | Fan FQ, He ZX, Kong LL, Chen QH, Yuan Q, Zhang SH, Ye JJ, Liu H, Sun XF, Geng J, Yuan LZ, Hong LX, Xiao C, Zhang WJ, Sun XH, Li YZ, Wang P, Huang LH, Wu XR, Ji ZL, Wu Q, Xia NS, Gray NS, Chen LF, Yun CH, Deng XM, Zhou DW. Pharmacological targeting of kinases MST1 and MST2 augments tissue repair and regeneration. Sci Transl Med, 2016, 8(352): 352ra108. |
|