[1] | Zhao B, Li L, Lei QY, Guan KL. The Hippo-YAP pathway in organ size control and tumorigenesis: an updated version. Genes Dev, 2010, 24(9): 862-874. | [2] | Zhao B, Tumaneng K, Guan KL. The Hippo pathway in organ size control, tissue regeneration and stem cell self-renewal. Nat Cell Biol, 2011, 13(8): 877-883. | [3] | Yu FX, Guan KL. The Hippo pathway: Regulators and regulations. Genes Dev, 2013, 27(4): 355-371. | [4] | Chan EHY, Nousiainen M, Chalamalasetty RB, Sch?fer A, Nigg EA, Silljé HHW. The Ste20-like kinase Mst2 activates the human large tumor suppressor kinase Lats1. Oncogene, 2005, 24(12): 2076-2086. | [5] | Zhao B, Wei XM, Li WQ, Udan RS, Yang Q, Kim J, Xie J, Ikenoue T, Yu JD, Li L, Zheng P, Ye KQ, Chinnaiyan A, Halder G, Lai ZC, Guan KL. Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev, 2007, 21(21): 2747-2761. | [6] | Praskova M, Xia F, Avruch J. MOBKL1A/MOBKL1B phosphorylation by MST1 and MST2 inhibits cell proliferation. Curr Biol, 2008, 18(5): 311-321. | [7] | Dong JX, Feldmann G, Huang JB, Wu SA, Zhang NL, Comerford SA, Gayyed MF, Anders RA, Maitra A, Pan DJ. Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell, 2007, 130(6): 1120-1133. | [8] | Oh H, Irvine KD. In vivo regulation of Yorkie phosphorylation and localization. Development, 2008, 135(6): 1081-1088. | [9] | Liu CY, Zha ZY, Zhou X, Zhang H, Huang W, Zhao D, Li TT, Chan SW, Lim CJ, Hong WJ, Zhao SM, Xiong Y, Lei QY, Guan KL. The Hippo tumor pathway promotes TAZ degradation by phosphorylating a phosphodegron and recruiting the SCF β-TrCP E3 ligase. J Biol Chem, 2010, 285(48): 37159-37169. | [10] | Kanai F, Marignani PA, Sarbassova D, Yagi R, Hall RA, Donowitz M, Hisaminato A, Fujiwara T, Ito Y, Cantley LC, Yaffe MB. TAZ: A novel transcriptional co-activator regulated by interactions with 14-3-3 and PDZ domain proteins. EMBO J, 2000, 19(24): 6778-6791. | [11] | Rawlins EL, Okubo T, Xue Y, Brass DM, Auten RL, Hasegawa H, Wang F, Hogan BLM. The role of Scgb1a1 + Clara cells in the long-term maintenance and repair of lung airway, but not alveolar, epithelium. Cell Stem Cell, 2009, 4(6): 525-534. | [12] | Rock JR, Hogan BLM. Epithelial progenitor cells in lung development, maintenance, repair, and disease. Annu Rev Cell Dev Biol, 2011, 27(1): 493-512. | [13] | Desai TJ, Brownfield DG, Krasnow MA. Alveolar progenitor and stem cells in lung development, renewal and cancer. Nature, 2014, 507(7491): 190-194. | [14] | Barkauskas CE, Cronce MJ, Rackley CR, Bowie EJ, Keene DR, Stripp BR, Randell SH, Noble PW, Hogan BLM. Type 2 alveolar cells are stem cells in adult lung. J Clin Invest, 2013, 123(7): 3025-3036. | [15] | Adamson IY, Bowden DH. Derivation of type 1 epithelium from type 2 cells in the developing rat lung. Lab Invest, 1975, 32(6): 736-745. | [16] | Zhao R, Fallon TR, Saladi SV, Pardo-Saganta A, Villoria J, Mou HM, Vinarsky V, Gonzalez-Celeiro M, Nunna N, Hariri LP, Camargo F, Ellisen LW, Rajagopal J. Yap tunes airway epithelial size and architecture by regulating the identity, maintenance, and self-renewal of stem cells. Dev Cell, 2014, 30(2): 151-165. | [17] | Liu Z, Wu HJ, Jiang KW, Wang YJ, Zhang WJ, Chu QQ, Li J, Huang HW, Cai T, Ji HB, Yang C, Tang N. MAPK-Mediated YAP activation controls mechanical- tension-induced pulmonary alveolar regeneration. Cell Rep, 2016, 16(7): 1810-1819. | [18] | Tian Y, Kolb R, Hong JH, Carroll J, Li DW, You J, Bronson R, Yaffe MB, Zhou J, Benjamin T. TAZ promotes PC2 degradation through a SCF β-Trcp E3 ligase complex. Mol Cell Biol, 2007, 27(18): 6383-6395. | [19] | Makita R, Uchijima Y, Nishiyama K, Amano T, Chen Q, Takeuchi T, Mitani A, Nagase T, Yatomi Y, Aburatani H, Nakagawa O, Small EV, Cobo-Stark P, Igarashi P, Murakami M, Tominaga J, Sato T, Asano T, Kurihara Y, Kurihara H. Multiple renal cysts, urinary concentration defects, and pulmonary emphysematous changes in mice lacking TAZ. Am J Physiol Renal Physiol, 2008, 294(3): F542-F553. | [20] | Mitani A, Nagase T, Fukuchi K, Aburatani H, Makita R, Kurihara H. Transcriptional coactivator with PDZ-binding motif is essential for normal alveolarization in mice. Am J Respir Crit Care Med, 2009, 180(4): 326-338. | [21] | Mahoney JE, Mori M, Szymaniak AD, Varelas X, Cardoso WV. The Hippo pathway effector Yap Controls patterning and differentiation of airway epithelial progenitors. Dev Cell, 2014, 30(2): 137-150. | [22] | Lange AW, Sridharan A, Xu Y, Stripp BR, Perl AK, Whitsett JA. Hippo/Yap signaling controls epithelial progenitor cell proliferation and differentiation in the embryonic and adult lung. J Mol Cell Biol, 2015, 7(1): 35-47. | [23] | Chung C, Kim T, Kim M, Kim M, Song H, Kim TS, Seo E, Lee SH, Kim H, Kim SK, Yoo G, Lee DH, Hwang DS, Kinashi T, Kim JM, Lim DS. Hippo-Foxa2 signaling pathway plays a role in peripheral lung maturation and surfactant homeostasis. Proc Natl Acad Sci USA, 2013, 110(19): 7732-7737. | [24] | Lin CW, Yao E, Chuang PT. A conserved MST1/2-YAP axis mediates Hippo signaling during lung growth. Dev Biol, 2015, 403(1): 101-113. | [25] | Szymaniak AD, Mahoney JE, Cardoso WV, Varelas X. Crumbs3-mediated polarity directs airway epithelial cell fate through the Hippo pathway effector Yap. Dev Cell, 2015, 34(3): 283-296. | [26] | Paisley D, Bevan L, Choy KJ, Gross C. The pneumonectomy model of compensatory lung growth: Insights into lung regeneration. Pharmacol Ther, 2014, 142(2): 196-205. | [27] | Thane K, Ingenito EP, Hoffman AM. Lung regeneration and translational implications of the postpneumonectomy model. Transl Res, 2014, 163(4): 363-376. | [28] | Butler JP, Loring SH, Patz S, Tsuda A, Yablonskiy DA, Mentzer SJ. Evidence for adult lung growth in humans. N Engl J Med, 2012, 367(3): 244-247. | [29] | Hsia CC, Herazo LF, Fryder-Doffey F, Weibel ER. Compensatory lung growth occurs in adult dogs after right pneumonectomy. J Clin Invest, 1994, 94(1): 405-412. | [30] | Liu F, Lagares D, Choi KM, Stopfer L, Marinkovi? A, Vrbanac V, Probst CK, Hiemer SE, Sisson TH, Horowitz JC, Rosas IO, Fredenburgh LE, Feghali-Bostwick C, Varelas X, Tager AM, Tschumperlin DJ. Mechanosignaling through YAP and TAZ drives fibroblast activation and fibrosis. Am J Physiol Cell Mol Physiol, 2015, 308(4): L344-L357. | [31] | Zhao B, Ye X, Yu JD, Li L, Li WQ, Li SM, Yu JJ, Lin JD, Wang CY, Chinnaiyan AM, Lai ZC, Guan KL. TEAD mediates YAP-dependent gene induction and growth control. Genes Dev, 2008, 22(14): 1962-1971. | [32] | Lipson KE, Wong C, Teng Y, Spong S. CTGF is a central mediator of tissue remodeling and fibrosis and its inhibition can reverse the process of fibrosis. Fibrogenesis Tissue Repair, 2012, 5(Suppl 1): S24. | [33] | Ponticos M, Holmes AM, Xu SW, Leoni P, Khan K, Rajkumar VS, Hoyles RK, Bou-Gharios G, Black CM, Denton CP, Abraham DJ, Leask A, Lindahl GE. Pivotal role of connective tissue growth factor in lung fibrosis: MAPK-dependent transcriptional activation of type I collagen. Arthritis Rheum, 2009, 60(7): 2142-2155. | [34] | Lasky JA, Ortiz LA, Tonthat B, Hoyle GW, Corti M, Athas G, Lungarella G, Brody A, Friedman M. Connective tissue growth factor mRNA expression is upregulated in bleomycin-induced lung fibrosis. Am J Physiol Cell Mol Physiol, 1998, 275(2): L365-L371. | [35] | Khalil N, Greenberg AH. The role of TGF-beta in pulmonary fibrosis. Ciba Found Symp, 1991, 157: 194-207. | [36] | Bartram U, Speer CP. The role of transforming growth factor β in lung development and disease. Chest, 2004, 125(2): 754-765. | [37] | Tatler AL, Jenkins G. TGF-β activation and lung fibrosis. Proc Am Thorac Soc, 2012, 9(3): 130-136. | [38] | Ghosh AK, Vaughan DE. PAI-1 in tissue fibrosis. J Cell Physiol, 2012, 227(2): 493-507. | [39] | Niknamian S. Nutritional ketosis condition and specific ketogenic diet, may benefit cancer patients as an alternative treatment by sudden change in the metabolic state of cancer cells. Int Sci Investig J, 2016, 5(5): 28-48. | [40] | West H, Harpole D, Travis W. Histologic considerations for individualized systemic therapy approaches for the management of non-small cell lung cancer. Chest, 2009, 136(4): 1112-1118. | [41] | Kim YS, Kim EY, Ahn HK, Cho EK, Jeong YM, Kim JH. Prognostic significance of CT-emphysema score in patients with advanced squamous cell lung cancer. J Thorac Dis, 2016, 8(8): 1966-1973. | [42] | Wang Y, Dong QZ, Zhang QF, Li ZX, Wang EH, Qiu XS. Overexpression of yes-associated protein contributes to progression and poor prognosis of non-small-cell lung cancer. Cancer Sci, 2010, 101(5): 1279-1285. | [43] | Kim JM, Kang DW, Long LZ, Huang SM, Yeo MK, Yi ES, Kim KH. Differential expression of Yes-associated protein is correlated with expression of cell cycle markers and pathologic TNM staging in non-small-cell lung carcinoma. Hum Pathol, 2011, 42(3): 315-323. | [44] | Lin XY, Zhang XP, Wu JH, Qiu XS, Wang EH. Expression of LATS1 contributes to good prognosis and can negatively regulate YAP oncoprotein in non- small-cell lung cancer. Tumor Biol, 2014, 35(7): 6435-6443. | [45] | Yao F, Liu HC, Li ZG, Zhong CX, Fang WT. Down- regulation of LATS2 in non-small cell lung cancer promoted the growth and motility of cancer cells. Tumor Biol, 2015, 36(3): 2049-2057. | [46] | Stra?i?ar M, Mlakar V, Glava? D. LATS2 tumour specific mutations and down-regulation of the gene in non- small cell carcinoma. Lung Cancer, 2009, 64(3): 257-262. | [47] | Dhanasekaran SM, Balbin OA, Chen GA, Nadal E, Kalyana-Sundaram S, Pan JC, Veeneman B, Cao XH, Malik R, Vats P, Wang R, Huang S, Zhong JJ, Jing XJ, Iyer M, Wu YM, Harms PW, Lin J, Reddy R, Brennan C, Palanisamy N, Chang AC, Truini A, Truini M, Robinson DR, Beer DG, Chinnaiyan AM. Transcriptome meta-analysis of lung cancer reveals recurrent aberrations in NRG1 and Hippo pathway genes. Nat Commun, 2014, 5: 5893. | [48] | Chen HY, Yu SL, Ho BC, Su KY, Hsu YC, Chang CS, Li YC, Yang SY, Hsu PY, Ho H, Chang YH, Chen CY, Yang HI, Hsu CP, Yang TY, Chen KC, Hsu KH, Tseng JS, Hsia JY, Chuang CY, Yuan S, Lee MH, Liu CH, Wu GI, Hsiung CA, Chen YM, Wang CL, Huang MS, Yu CJ, Chen KY, Tsai YH, Su WC, Chen HW, Chen JJW, Chen CJ, Chang GC, Yang PC, Li KC. R331W missense mutation of oncogene YAP1 is a germline risk allele for lung adenocarcinoma with medical actionability. J Clin Oncol, 2015, 33(20): 2303-2310. | [49] | Li CG, Gao ZB, Li F, Li XC, Sun YH, Wang MY, Li D, Wang R, Li FM, Fang R, Pan YJ, Luo XY, He J, Zheng LT, Xia JF, Qiu LX, He J, Ye T, Zhang RX, He MH, Zhu ML, Hu HC, Shi TY, Zhou XY, Sun MH, Tian SL, Zhou Y, Wang QX, Chen LY, Yin GL, Lu JY, Wu RH, Guo GW, Li YR, Hu XD, Li L, Asan, Wang Q, Yin Y, Feng Q, Wang B, Wang H, Wang MB, Yang XN, Zhang XQ, Yang HM, Jin L, Wang CY, Ji HB, Chen HQ, Wang J, Wei QY. Whole exome sequencing identifies frequent somatic mutations in cell-cell adhesion genes in Chinese patients with lung squamous cell carcinoma. Sci Rep, 2015, 5: 14237. | [50] | Ito T, Matsubara D, Tanaka I, Makiya K, Tanei ZI, Kumagai Y, Shiu SJ, Nakaoka HJ, Ishikawa S, Isagawa T, Morikawa T, Shinozaki-Ushiku A, Goto Y, Nakano T, Tsuchiya T, Tsubochi H, Komura D, Aburatani H, Dobashi Y, Nakajima J, Endo S, Fukayama M, Sekido Y, Niki T, Murakami Y. Loss of YAP1 defines neuroendocrine differentiation of lung tumors. Cancer Sci, 2016, 107(10): 1527-1538. | [51] | Xu CM, Liu WW, Liu CJ, Wen C, Lu HF, Wan FS. Mst1 overexpression inhibited the growth of human non- small cell lung cancer in vitro and in vivo. Cancer Gene Ther, 2013, 20(8): 453-460. | [52] | Zhang WJ, Gao YJ, Li PX, Shi ZB, Guo T, Li F, Han XK, Feng Y, Zheng C, Wang ZY, Li FM, Chen HQ, Zhou ZC, Zhang L, Ji HB. VGLL4 functions as a new tumor suppressor in lung cancer by negatively regulating the YAP-TEAD transcriptional complex. Cell Res, 2014, 24(3): 331-343. | [53] | Zhou Z, Hao Y, Liu N, Raptis L, Tsao MS, Yang X. TAZ is a novel oncogene in non-small cell lung cancer. Oncogene, 2011, 30(18): 2181-2186. | [54] | Wang L, Chen ZH, Wang YJ, Chang D, Su LX, Guo YH, Liu CT. WWTR1 promotes cell proliferation and inhibits apoptosis through cyclin A and CTGF regulation in non- small cell lung cancer. Tumor Biol, 2014, 35(1): 463-468. | [55] | Zhang WJ, Gao YJ, Li FM, Tong XY, Ren Y, Han XK, Yao S, Long F, Yang ZZ, Fan HY, Zhang L, Ji HB. YAP promotes malignant progression of Lkb1-deficient lung adenocarcinoma through downstream regulation of survivin. Cancer Res, 2015, 75(21): 4450-4457. | [56] | Lau AN, Curtis SJ, Fillmore CM, Rowbotham SP, Mohseni M, Wagner DE, Beede AM, Montoro DT, Sinkevicius KW, Walton ZE, Barrios J, Weiss DJ, Camargo FD, Wong KK, Kim CF. Tumor-propagating cells and Yap/Taz activity contribute to lung tumor progression and metastasis. EMBO J, 2014, 33(5): 468-481. | [57] | Bora-Singhal N, Nguyen J, Schaal C, Perumal D, Singh S, Coppola D, Chellappan S. YAP1 regulates OCT4 activity and SOX2 expression to facilitate self-renewal and vascular mimicry of stem-like cells. Stem Cells, 2015, 33(6): 1705-1718. | [58] | Gao YJ, Zhang WJ, Han XK, Li FM, Wang XJ, Wang R, Fang ZY, Tong XY, Yao S, Li F, Feng Y, Sun YH, Hou YY, Yang ZZ, Guan KL, Chen HQ, Zhang L, Ji HB. YAP inhibits squamous transdifferentiation of Lkb1-deficient lung adenocarcinoma through ZEB2-dependent DNp63 repression. Nat Commun, 2014, 5: 4629. | [59] | Horie M, Saito A, Ohshima M, Suzuki HI, Nagase T. YAP and TAZ modulate cell phenotype in a subset of small cell lung cancer. Cancer Sci, 2016, 107(12): 1755-1766. | [60] | Xu W, Wei YY, Wu SS, Wang Y, Wang Z, Sun Y, Cheng SY, Wu JQ. Up-regulation of the Hippo pathway effector TAZ renders lung adenocarcinoma cells harboring EGFR- T790M mutation resistant to gefitinib. Cell Biosci, 2015, 5: 7. | [61] | Lee JE, Park HS, Lee D, Yoo G, Kim T, Jeon H, Yeo MK, Lee CS, Moon JY, Jung SS, Kim JO, Kim SY, Park DI, Park YH, Lee JC, Oh IJ, Lim DS, Chung C. Hippo pathway effector YAP inhibition restores the sensitivity of EGFR-TKI in lung adenocarcinoma having primary or acquired EGFR-TKI resistance. Biochem Biophys Res Commun, 2016, 474(1): 154-160. | [62] | Hsu PC, You B, Yang YL, Zhang WQ, Wang YC, Xu ZD, Dai YY, Liu S, Yang CT, Li H, Hu B, Jablons DM, You L. YAP promotes erlotinib resistance in human non-small cell lung cancer cells. Oncotarget, 2016, 7(32): 51922-51933. | [63] | Roan E, Waters CM. What do we know about mechanical strain in lung alveoli? Am J Physiol Lung Cell Mol Physiol, 2011, 301(5): L625-L635. | [64] | Edwards YS. Stretch stimulation: its effects on alveolar type II cell function in the lung. Comp Biochem Physiol Part A Mol Integr Physiol, 2001, 129(1): 245-260. | [65] | Sanchez-Esteban J, Cicchiello LA, Wang YL, Tsai SW, Williams LK, Torday JS, Rubin LP. Mechanical stretch promotes alveolar epithelial type II cell differentiation. J Appl Physiol, 2001, 91(2): 589-595. | [66] | Wirtz HR, Dobbs LG. Calcium mobilization and exocytosis after one mechanical stretch of lung epithelial cells. Science, 1990, 250(4985): 1266-1269. | [67] | Arold SP, Bartolák-Suki E, Suki B. Variable stretch pattern enhances surfactant secretion in alveolar type II cells in culture. Am J Physiol Cell Mol Physiol, 2009, 296(4): L574-L581. | [68] | Desai LP, Chapman KE, Waters CM. Mechanical stretch decreases migration of alveolar epithelial cells through mechanisms involving Rac1 and Tiam1. Am J Physiol Cell Mol Physiol, 2008, 295(5): L958-L965. | [69] | Cavanaugh Jr KJ, Oswari J, Margulies SS. Role of stretch on tight junction structure in alveolar epithelial cells. Am J Respir Cell Mol Biol, 2001, 25(5): 584-591. | [70] | Colebatch HJ, Finucane KE, Smith MM. Pulmonary conductance and elastic recoil relationships in asthma and emphysema. J Appl Physiol, 1973, 34(2): 143-153. | [71] | Mead J, Lindgren I, Gaensler EA. The mechanical properties of the lungs in emphysema. J Clin Invest, 1955, 34(7): 1005-1016. | [72] | Liu F, Mih JD, Shea BS, Kho AT, Sharif AS, Tager AM, Tschumperlin DJ. Feedback amplification of fibrosis through matrix stiffening and COX-2 suppression. J Cell Biol, 2010, 190(4): 693-706. | [73] | Jakus Z, Gleghorn JP, Enis DR, Sen A, Chia S, Liu X, Rawnsley DR, Yang YQ, Hess PR, Zou ZY, Yang JS, Guttentag SH, Nelson CM, Kahn ML. Lymphatic function is required prenatally for lung inflation at birth. J Exp Med, 2014, 211(5): 815-826. | [74] | Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S, Cordenonsi M, Zanconato F, Le Digabel J, Forcato M, Bicciato S, Elvassore N, Piccolo S. Role of YAP/TAZ in mechanotransduction. Nature, 2011, 474(7350): 179-183. | [75] | Porazinski S, Wang HJ, Asaoka Y, Behrndt M, Miyamoto T, Morita H, Hata S, Sasaki T, Krens SFG, Osada Y, Asaka S, Momoi A, Linton S, Miesfeld JB, Link BA, Senga T, Castillo-Morales A, Urrutia AO, Shimizu N, Nagase H, Matsuura S, Bagby S, Kondoh H, Nishina H, Heisenberg CP, Furutani-Seiki M. YAP is essential for tissue tension to ensure vertebrate 3D body shape. Nature, 2015, 521(7551): 217-221. | [76] | Perlman CE, Bhattacharya J. Alveolar expansion imaged by optical sectioning microscopy. J Appl Physiol, 2007, 103(3): 1037-1044. | [77] | Liu SC, Hsu CJ, Fong YC, Chuang SM, Tang CH. CTGF induces monocyte chemoattractant protein-1 expression to enhance monocyte migration in human synovial fibroblasts. Biochim Biophys Acta, 2013, 1833(5): 1114-1124. | [78] | Guo XC, Zhao Y, Yan H, Yang YC, Shen SY, Dai XM, Ji XY, Ji FB, Gong XG, Li L, Bai XL, Feng XH, Liang TB, Ji JF, Chen L, Wang HY, Zhao B. Single tumor- initiating cells evade immune clearance by recruiting type II macrophages. Genes Dev, 2017, 31(3): 247-259. |
|