[1] | Capecchi MR. Gene targeting in mice: functional analysis of the mammalian genome for the twenty-first century. Nat Rev Genet, 2005, 6(6): 507-512. | [2] | Thomas KR, Capecchi MR. Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell, 1987, 51(3): 503-512. | [3] | Brown JP, Wei WY, Sedivy JM. Bypass of senescence after disruption of p21 CIP1 /WAF1 gene in normal diploid human fibroblasts. Science , 1997, 277(5327): 831-834. | [4] | Bibikova M, Carroll D, Segal DJ, Trautman JK, Smith J, Kim YG, Chandrasegaran S. Stimulation of homologous recombination through targeted cleavage by chimeric nucleases. Mol Cell Biol, 2001, 21(1): 289-297. | [5] | Bibikova M, Golic M, Golic KG, Carroll D. Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics, 2002, 161(3): 1169-1175. | [6] | Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, Bogdanove AJ, Voytas DF. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics, 2010, 186(2): 757-761. | [7] | Makarova KS, Grishin NV, Shabalina SA, Wolf YI, Koonin EV. A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol Direct, 2006, 1: 7. | [8] | Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012, 337(6096): 816-821. | [9] | Cong L, Ran FA, Cox D, Lin SL, Barretto R, Habib N, Hsu PD, Wu XB, Jiang WY, Marraffini LA, Zhang F. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013, 339(6121): 819-823. | [10] | Zhou JW, Xu QP, Yao J, Yu SM, Cao SZ. CRISPR/Cas9 genome editing technique and its application in site-directed genome modification of animals. Hereditas (Beijing), 2015, 37(10): 1011-1020. | [10] | 周金伟, 徐绮嫔, 姚婧, 余树民, 曹随忠. CRISPR/Cas9基因组编辑技术及其在动物基因组定点修饰中的应用. 遗传, 2015, 37(10): 1011-1020. | [11] | Xu YY, Yang Q, Ren J. Application of CRISPR/Cas9 mediated genome editing in farm animals. Hereditas (Beijing), 2016, 38(3): 217-226. | [11] | 幸宇云, 杨强, 任军. CRISPR/Cas9基因组编辑技术在农业动物中的应用. 遗传, 2016, 38(3): 217-226. | [12] | Haft DH, Selengut J, Mongodin EF, Nelson KE. A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLoS Comput Biol, 2005, 1(6): e60. | [13] | Nelson CE, Hakim CH, Ousterout DG, Tha |
[1] |
廉小平, 黄光福, 张玉娇, 张静, 胡凤益, 张石来. 长雄野生稻有利基因的发掘与利用[J]. 遗传, 2023, 45(9): 765-780. |
[2] |
李亚楠, 张贤君, 张宁, 梁雅琳, 张宇星, 招华兴, 李紫聪, 黄思秀. 过表达组蛋白H3K9me3去甲基化酶对猪克隆胚胎发育的影响[J]. 遗传, 2023, 45(1): 67-77. |
[3] |
高菲, 王煜, 杜嘉祥, 杜旭光, 赵建国, 潘登科, 吴森, 赵要风. 遗传修饰猪模型在生物医学及农业领域研究进展及应用[J]. 遗传, 2023, 45(1): 6-28. |
[4] |
唐湘薇, 楚丹, 颜赛娜, 尹艳飞, 卞桥, 翁波, 陈斌, 冉茂良. miR-191靶向BDNF基因通过激活PI3K/AKT信号通路促进猪未成熟支持细胞增殖[J]. 遗传, 2021, 43(7): 680-693. |
[5] |
周子文, 王雪, 丁向东. 基于高密度SNP标记估计群体间遗传关联[J]. 遗传, 2021, 43(4): 340-349. |
[6] |
彭定威, 李瑞强, 曾武, 王敏, 石翾, 曾检华, 刘小红, 陈瑶生, 何祖勇. 编辑MSTN半胱氨酸节基元促进两广小花猪肌肉生长[J]. 遗传, 2021, 43(3): 261-270. |
[7] |
魏强, 奥岩, 杨漫漫, 陈涛, 韩虎, 张兴举, 王然, 夏秋菊, 姜芳芳, 李勇. 利用全基因组重测序技术鉴定五指山猪GHR突变体转基因插入位点[J]. 遗传, 2021, 43(12): 1149-1158. |
[8] |
韩程程, 夏凯, 龚茹莹, 吴栩涵, 张蕾, 梁新乐. 适于检测非洲猪瘟病毒的点亮Spinach-p54 RNA适配体的设计及应用[J]. 遗传, 2021, 43(12): 1170-1178. |
[9] |
邢宝松, 王璟, 陈俊峰, 马强, 任巧玲, 张家庆, 张华, 滑留帅, 孙加节, 曹海. 去势和非去势公猪背最长肌circRNA差异表达分析[J]. 遗传, 2021, 43(11): 1066-1077. |
[10] |
周俊, 赵成成, 吴霄, 石俊松, 周荣, 吴珍芳, 李紫聪. 猪耳成纤维细胞转录组异质性及对核移植胚胎发育的潜在影响[J]. 遗传, 2020, 42(9): 898-915. |
[11] |
陈赢男, 陆静. CRISPR/Cas9系统在林木基因编辑中的应用[J]. 遗传, 2020, 42(7): 657-668. |
[12] |
任巧玲, 张家庆, 陆东锋, 王璟, 陈俊峰, 马强, 白献晓, 郭红霞, 高彬文, 邢宝松. 乏情和发情初产母猪下丘脑-垂体-卵巢轴中lincRNAs表达谱比较分析[J]. 遗传, 2020, 42(4): 388-402. |
[13] |
杨岸奇, 陈斌, 冉茂良, 杨广民, 曾诚. 基因组选择在猪杂交育种中的应用[J]. 遗传, 2020, 42(2): 145-152. |
[14] |
王冰源, 牟玉莲, 李奎, 刘志国. 农业动物干细胞研究进展[J]. 遗传, 2020, 42(11): 1073-1080. |
[15] |
敖政, 陈祥, 吴珍芳, 李紫聪. 体细胞克隆猪发育异常研究进展[J]. 遗传, 2020, 42(10): 993-1003. |
|