[1] | Capecchi MR. Gene targeting in mice: functional analysis of the mammalian genome for the twenty-first century. Nat Rev Genet, 2005, 6(6): 507-512. | [2] | Thomas KR, Capecchi MR. Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell, 1987, 51(3): 503-512. | [3] | Brown JP, Wei WY, Sedivy JM. Bypass of senescence after disruption of p21 CIP1 /WAF1 gene in normal diploid human fibroblasts. Science , 1997, 277(5327): 831-834. | [4] | Bibikova M, Carroll D, Segal DJ, Trautman JK, Smith J, Kim YG, Chandrasegaran S. Stimulation of homologous recombination through targeted cleavage by chimeric nucleases. Mol Cell Biol, 2001, 21(1): 289-297. | [5] | Bibikova M, Golic M, Golic KG, Carroll D. Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics, 2002, 161(3): 1169-1175. | [6] | Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, Bogdanove AJ, Voytas DF. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics, 2010, 186(2): 757-761. | [7] | Makarova KS, Grishin NV, Shabalina SA, Wolf YI, Koonin EV. A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol Direct, 2006, 1: 7. | [8] | Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012, 337(6096): 816-821. | [9] | Cong L, Ran FA, Cox D, Lin SL, Barretto R, Habib N, Hsu PD, Wu XB, Jiang WY, Marraffini LA, Zhang F. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013, 339(6121): 819-823. | [10] | Zhou JW, Xu QP, Yao J, Yu SM, Cao SZ. CRISPR/Cas9 genome editing technique and its application in site-directed genome modification of animals. Hereditas (Beijing), 2015, 37(10): 1011-1020. | [10] | 周金伟, 徐绮嫔, 姚婧, 余树民, 曹随忠. CRISPR/Cas9基因组编辑技术及其在动物基因组定点修饰中的应用. 遗传, 2015, 37(10): 1011-1020. | [11] | Xu YY, Yang Q, Ren J. Application of CRISPR/Cas9 mediated genome editing in farm animals. Hereditas (Beijing), 2016, 38(3): 217-226. | [11] | 幸宇云, 杨强, 任军. CRISPR/Cas9基因组编辑技术在农业动物中的应用. 遗传, 2016, 38(3): 217-226. | [12] | Haft DH, Selengut J, Mongodin EF, Nelson KE. A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLoS Comput Biol, 2005, 1(6): e60. | [13] | Nelson CE, Hakim CH, Ousterout DG, Thakore PI, Moreb EA, Castellanos Rivera RM, Madhavan S, Pan XF, Ran FA, Yan WX, Asokan A, Zhang F, Duan DS, Gersbach CA. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science, 2016, 351(6271): 403-407. | [14] | Gasiunas G, Barrangou R, Horvath P, Siksnys V. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci USA, 2012, 109(39): E2579-E2586. | [15] | Gasiunas G, Siksnys V. RNA-dependent DNA endonuclease Cas9 of the CRISPR system: holy grail of genome editing?. Trends Microbiol, 2013, 21(11): 562-567. | [16] | Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, Van Der Oost J, Regev A, Koonin EV, Zhang F. Cpf1 is a single RNA- guided endonuclease of a class 2 CRISPR-Cas system. Cell, 2015, 163(3): 759-771. | [17] | Kleinstiver BP, Prew MS, Tsai SQ, Topkar VV, Nguyen NT, Zheng ZL, Gonzales APW, Li ZY, Peterson RT, Yeh JRJ, Aryee MJ, Joung JK. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature, 2015, 523(7561): 481-485. | [18] | Hirano H, Gootenberg JS, Horii T, Abudayyeh OO, Kimura M, Hsu PD, Nakane T, Ishitani R, Hatada I, Zhang F, Nishimasu H, Nureki O. Structure and engineering of Francisella novicida Cas9. Cell, 2016, 164(5): 950-961. | [19] | Kleinstiver BP, Prew MS, Tsai SQ, Nguyen NT, Topkar VV, Zheng Z, Joung JK. Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition. Nat Biotechnol, 2015, 33(12): 1293-1298. | [20] | Kim YB, Komor AC, Levy JM, Packer MS, Zhao KT, Liu DR. Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions. Nat Biotechnol, 2017, 35(4): 371-376. | [21] | Kim K, Ryu SM, Kim ST, Baek G, Kim D, Lim K, Chung E, Kim S, Kim JS. Highly efficient RNA-guided base editing in mouse embryos. Nat Biotechnol, 2017, 35(5): 435-437. | [22] | Komor AC, Badran AH, Liu DR. CRISPR-Based Technologies for the Manipulation of Eukaryotic Genomes. Cell, 2017, 168(1-2): 20-36. | [23] | Xu S, Cao SS, Zou BJ, Yue YY, Gu C, Chen X, Wang P, Dong XH, Xiang Z, Li K, Zhu MS, Zhao QS, Zhou GH. An alternative novel tool for DNA editing without target sequence limitation: the structure-guided nuclease. Genome Biol, 2016, 17: 186. | [24] | Qi JL, Dong ZJ, Shi YW, Wang X, Qin YY, Wang YM, Liu D. NgAgo-based fabp11a gene knockdown causes eye developmental defects in zebrafish. Cell Res, 2016, 26(12): 1349-1352. | [25] | Pursel VG, Bolt DJ, Miller KF, Pinkert CA, Hammer RE, Palmiter RD, Brinster RL. Expression and performance in transgenic pigs. J Reprod Fertil Suppl, 1990, 40: 235-245. | [26] | Bleck GT, Monaco MH, Miller DJ, Donovan SM, Wheeler MB. Transgenic alteration of sow milk to improve piglet growth and health. Reprod Suppl, 2001, 58: 313-324. | [27] | Whyte JJ, Prather RS. Genetic modifications of pigs for medicine and agriculture. Mol Reprod Dev, 2011, 78(10-11): 879-891. | [28] | Emiola A, Akinremi O, Slominski B, Nyachoti CM. Nutrient utilization and manure P excretion in growing pigs fed corn-barley-soybean based diets supplemented with microbial phytase. Anim Sci J, 2009, 80(1): 19-26. | [29] | Golovan SP, Meidinger RG, Ajakaiye A, Cottrill M, Wiederkehr MZ, Barney DJ, Plante C, Pollard JW, Fan MZ, Hayes MA, Laursen J, Hjorth JP, Hacker RR, Phillips JP, Forsberg CW. Pigs expressing salivary phytase produce low-phosphorus manure. Nat Biotechnol, 2001, 19(8): 741-745. | [30] | Saeki K, Matsumoto K, Kinoshita M, Suzuki I, Tasaka Y, Kano K, Taguchi Y, Mikami K, Hirabayashi M, Kashiwazaki N, Hosoi Y, Murata N, Iritani A. Functional expression of a Δ12 fatty acid desaturase gene from spinach in transgenic pigs. Proc Natl Acad Sci USA, 2004, 101(17): 6361-6366. | [31] | Schaefer EJ, Bongard V, Beiser AS, Lamon-Fava S, Robins SJ, Au R, Tucker KL, Kyle DJ, Wilson PW, Wolf PA. Plasma phosphatidylcholine docosahexaenoic acid content and risk of dementia and Alzheimer disease: the framingham heart study. Arch Neurol, 2006, 63(11): 1545-1550. | [32] | Kang JX. The omega-6/omega-3 fatty acid ratio in chronic diseases: animal models and molecular aspects. World Rev Nutr Diet, 2011, 102: 22-29. | [33] | Simopoulos AP. Overview of evolutionary aspects of ω3 fatty acids in the diet. World Rev Nutr Diet, 1998, 83: 1-11. | [34] | Lai LX, Kang JX, Li RF, Wang JD, Witt WT, Yong HY, Hao YH, Wax DM, Murphy CN, Rieke A, Samuel M, Linville ML, Korte SW, Evans RW, Starzl TE, Prather RS, Dai YF. Generation of cloned transgenic pigs rich in omega-3 fatty acids. Nat Biotechnol, 2006, 24(4): 435-436. | [35] | Zhou YR, Lin YL, Wu XJ, Feng C, Long C, Xiong FY, Wang N, Pan DK, Chen HX. The high-level accumulation of n-3 polyunsaturated fatty acids in transgenic pigs harboring the n-3 fatty acid desaturase gene from Caenorhabditis briggsae. Transgenic Res, 2014, 23(1): 89-97. | [36] | Spencer JD, Gaines AM, Berg EP, Allee GL. Diet modifications to improve finishing pig growth performance and pork quality attributes during periods of heat stress. J Anim Sci, 2005, 83(1): 243-254. | [37] | Chen MY, Tu CF, Huang SY, Lin JH, Tzang BS, Hseu TH, Lee WC. Augmentation of thermotolerance in primary skin fibroblasts from a transgenic pig overexpressing the porcine HSP70.2. Asian-Austral J Anim Sci, 2005, 18(1): 107-112. | [38] | McPherron AC, Lee SJ. Double muscling in cattle due to mutations in the myostatin gene. Proc Natl Acad Sci USA, 1997, 94(23): 12457-12461. | [39] | Mcpherron AC, Lawler AM, Lee SJ. Regulation of skeletal muscle mass in mice by a new TGF-p superfamily member. Nature, 1997, 387(6628): 83-90. | [40] | Bi YZ, Hua ZD, Liu XM, Hua WJ, Ren HY, Xiao HW, Zhang LP, Li L, Wang ZR, Laible G, Wang Y, Dong FM, Zheng XM. Isozygous and selectable marker-free MSTN knockout cloned pigs generated by the combined use of CRISPR/Cas9 and Cre/LoxP. Sci Rep, 2016, 6: 31729. | [41] | Wang KK, Ouyang HS, Xie ZC, Yao CG, Guo NN, Li MJ, Jiao HP, Pang DX. Efficient generation of myostatin mutations in pigs using the CRISPR/Cas9 system. Sci Rep, 2015, 5: 16623. | [42] | Qian LL, Tang MX, Yang JZ, Wang QQ, Cai CB, Jiang SW, Li HG, Jiang K, Gao PF, Ma DZ, Chen YX, An XR, Li K, Cui WT. Targeted mutations in myostatin by zinc-finger nucleases result in double-muscled phenotype in Meishan pigs. Sci Rep, 2015, 5: 14435. | [43] | Senf P, Schmitz B, Holtkamp M, Janz D. Prognosis of juvenile myoclonic epilepsy 45 years after onset: seizure outcome and predictors. Neurology, 2013, 81(24): 2128-2133. | [44] | Hanada K, Suzuki Y, Nakane T, Hirose O, Gojobori T. The origin and evolution of porcine reproductive and respiratory syndrome viruses. Mol Biol Evol, 2005, 22(4): 1024-1031. | [45] | Shi M, Lam TTY, Hon CC, Murtaugh MP, Davies PR, Hui RKH, Li J, Wong LTW, Yip CW, Jiang JW, Leung FCC. Phylogeny-based evolutionary, demographical, and geographical dissection of North American type 2 porcine reproductive and respiratory syndrome viruses. J Virol, 2010, 84(17): 8700-8711. | [46] | Murtaugh MP, Stadejek T, Abrahante JE, Lam TTY, Leung FCC. The ever-expanding diversity of porcine reproductive and respiratory syndrome virus. Virus Res, 2010, 154(1-2): 18-30. | [47] | Meng XJ. Heterogeneity of porcine reproductive and respiratory syndrome virus: implications for current vaccine efficacy and future vaccine development. Vet Microbiol, 2000, 74(4): 309-329. | [48] | Martinez-Pomares L, Gordon S. CD169 + macrophages at the crossroads of antigen presentation. . Trends Immunol, 2012, 33(2): 66-70. | [49] | Prather RS, Rowland RRR, Ewen C, Trible B, Kerrigan M, Bawa B, Teson JM, Mao JD, Lee K, Samuel MS, Whitworth KM, Murphy CN, Egen T, Green JA. An intact sialoadhesin (Sn/SIGLEC1/CD169) is not required for attachment/internalization of the porcine reproductive and respiratory syndrome virus. J Virol, 2013, 87(17): 9538-9546. | [50] | Van Breedam W, Delputte PL, Van Gorp H, Misinzo G, Vanderheijden N, Duan XB, Nauwynck HJ. Porcine reproductive and respiratory syndrome virus entry into the porcine macrophage. J Gen Virol, 2010, 91: 1659-1667. | [51] | Prather RS, Whitworth KM, Schommer SK, Wells KD. Genetic engineering alveolar macrophages for host resistance to PRRSV. Vet Microbiol, 2017, 209: 124-129. | [52] | Whitworth KM, Rowland RRR, Ewen CL, Trible BR, Kerrigan MA, Cino-Ozuna AG, Samuel MS, Lightner JE, Mclaren DG, Mileham AJ, Wells KD, Prather RS. Gene-edited pigs are protected from porcine reproductive and respiratory syndrome virus. Nat Biotechnol, 2016, 34(1): 20-22. | [53] | Lunney JK, Fang Y, Ladinig A, Chen NH, Li YH, Rowland B, Renukaradhya GJ. Porcine reproductive and respiratory syndrome virus (PRRSV): pathogenesis and interaction with the immune system. Annu Rev Anim Biosci, 2016, 4: 129-154. | [54] | Wells KD, Bardot R, Whitworth KM, Trible BR, Fang Y, Mileham A, Kerrigan MA, Samuel MS, Prather RS, Rowland RRR. Replacement of porcine CD163 scavenger receptor cysteine-rich domain 5 with a CD163-like homolog confers resistance of pigs to genotype 1 but not genotype 2 porcine reproductive and respiratory syndrome virus. J Virol, 2017, 91(2): e01521-e01516. | [55] | Popescu L, Gaudreault NN, Whitworth KM, Murgia MV, Nietfeld JC, Mileham A, Samuel M, Wells KD, Prather RS, Rowland RRR. Genetically edited pigs lacking CD163 show no resistance following infection with the African swine fever virus isolate, Georgia 2007/1. Virology, 2017, 501: 102-106. | [56] | Ramírez-Carvajal L, Singh N, De Los Santos T, Rodríguez LL, Long CR. Depletion of elongation initiation factor 4E binding proteins by CRISPR/Cas9 enhances the antiviral response in porcine cells. Antiviral Res, 2016, 125: 8-13. | [57] | Yao J, Huang JJ, Zhao JG. Genome editing revolutionize the creation of genetically modified pigs for modeling human diseases. Hum Genet, 2016, 135(9): 1093-1105. | [58] | Zheng QT, Lin J, Huang JJ, Zhang HY, Zhang R, Zhang XY, Cao CW, Hambly C, Qin GS, Yao J, Song RG, Jia QT, Wang X, Li YS, Zhang N, Piao ZY, Ye RC, Speakman JR, Wang HM, Zhou Q, Wang YF, Jin WZ, Zhao JG. Reconstitution of UCP1 using CRISPR/Cas9 in the white adipose tissue of pigs decreases fat deposition and improves thermogenic capacity. Proc Natl Acad Sci USA, 2017, DOI: 10.1073/pnas.1707853114. | [59] | Wang XL, Cao CW, Huang JJ, Yao J, Hai T, Zheng QT, Wang X, Zhang HY, Qin GS, Cheng JB, Wang YF, Yuan ZQ, Zhou Q, Wang HM, Zhao JG. One-step generation of triple gene- targeted pigs using CRISPR/Cas9 system. Sci Rep, 2016, 6: 20620. | [60] | Duijvesteijn N, Knol EF, Merks JW, Crooijmans RP, Groenen MA, Bovenhuis H, Harlizius B. A genome-wide association study on androstenone levels in pigs reveals a cluster of candidate genes on chromosome 6. BMC Genet, 2010, 11: 42. | [61] | Ojeda A, Huang LS, Ren J, Angiolillo A, Cho IC, Soto H, Lemús-Flores C, Makuza SM, Folch JM, Pérez-Enciso M. Selection in the making: a worldwide survey of haplotypic diversity around a causative mutation in porcine IGF2. Genetics, 2008, 178(3): 1639-1652. | [62] | Meidtner K, Schwarzenbacher H, Scharfe M, Severitt S, Bl?cker H, Fries R. Haplotypes of the porcine peroxisome proliferator-activated receptor delta gene are associated with backfat thickness. BMC Genet, 2009, 10: 76. | [63] | Mikawa S, Sato S, Nii M, Morozumi T, Yoshioka G, Imaeda N, Yamaguchi T, Hayashi T, Awata T. Identification of a second gene associated with variation in vertebral number in domestic pigs. BMC Genet, 2011, 12: 5. | [64] | Yang J, Huang LS, Yang M, Fan Y, Li L, Fang SM, Deng WJ, Cui LL, Zhang Z, Ai HS, Wu ZF, Gao J, Ren J. Possible introgression of the VRTN mutation increasing vertebral number, carcass length and teat number from Chinese pigs into European pigs. Sci Rep, 2016, 6: 19240. | [65] | Fan Y, Xing YY, Zhang ZY, Ai HS, Ouyang ZX, Ouyang J, Yang M, Li PH, Chen YJ, Gao J, Li L, Huang LS, Ren J. A further look at porcine chromosome 7 reveals VRTN variants associated with vertebral number in Chinese and Western pigs. PLoS One, 2013, 8(4): e62534. | [66] | Mikawa S, Morozumi T, Shimanuki SI, Hayashi T, Uenishi H, Domukai M, Okumura N, Awata T. Fine mapping of a swine quantitative trait locus for number of vertebrae and analysis of an orphan nuclear receptor, germ cell nuclear factor (NR6A1). Genome Res, 2007, 17(5): 586-593. | [67] | Yang G, Ren J, Zhang Z, Huang L. Genetic evidence for the introgression of Western NR6A1 haplotype into Chinese Licha breed associated with increased vertebral number. Anim Genet, 2009, 40(2): 247-250. | [68] | Yan GR, Qiao RM, Zhang F, Xin WS, Xiao SJ, Huang T, Zhang ZY, Huang LS. Imputation-based whole-genome sequence association study rediscovered the missing QTL for lumbar number in Sutai Pigs. Sci Rep, 2017, 7: 615. | [69] | Ma JW, Yang J, Zhou LS, Ren J, Liu XX, Zhang H, Yang B, Zhang ZY, Ma HB, Xie XH, Xing Y, Guo YY, Gao YM, Huang LS. A splice mutation in the PHKG1 gene causes high glycogen content and low meat quality in pig skeletal muscle. PLoS Genet, 2014, 10(10): e1004710. | [70] | Ai HS, Fang XD, Yang B, Huang ZY, Chen H, Mao LK, Zhang F, Zhang L, Cui LL, He WM, Yang J, Yao XM, Zhou LS, Han LJ, Li J, Sun SL, Xie XH, Lai BX, Su Y, Lu Y, Yang H, Huang T, Deng WJ, Nielsen R, Ren J, Huang LS. Adaptation and possible ancient interspecies introgression in pigs identified by whole-genome sequencing. Nat Genet, 2015, 47(3): 217-225. | [71] | Zhang LC, Li N, Liu X, Liang J, Yan H, Zhao KB, Pu L, Shi HB, Zhang YB, Wang LG, Wang LX. A genome-wide association study of limb bone length using a Large White × Minzhu intercross population. Genet Sel Evol, 2014, 46(1): 56. | [72] | Do DN, Strathe AB, Ostersen T, Pant SD, Kadarmideen HN. Genome-wide association and pathway analysis of feed efficiency in pigs reveal candidate genes and pathways for residual feed intake. Front Genet, 2014, 5: 307. | [73] | Ren J, Yan XM, Ai HS, Zhang ZY, Huang X, Ouyang J, Yang M, Yang HG, Han PF, Zeng WH, Chen YJ, Guo YM, Xiao SJ, Ding NS, Huang LS. Susceptibility towards enterotoxigenic Escherichia coli F4ac diarrhea is governed by the MUC13 gene in pigs. PLoS One, 2012, 7(9): e44573. | [74] | Li MZ, Tian SL, Jin L, Zhou GY, Li Y, Zhang Y, Wang T, Yeung CKL, Chen L, Ma JD, Zhang JB, Jiang AA, Li J, Zhou CW, Zhang J, Liu YK, Sun XQ, Zhao HW, Niu ZX, Lou PE, Xian LJ, Shen XY, Liu SP, Zhang SH, Zhang MW, Zhu L, Shuai SR, Bai L, Tang GQ, Liu HF, Jiang YZ, Mai MM, Xiao J, Wang X, Zhou Q, Wang ZQ, Stothard P, Xue M, Gao XL, Luo ZG, Gu YR, Zhu HM, Hu XX, Zhao YF, Plastow GS, Wang JY, Jiang Z, Li K, Li N, Li XW, Li RQ. Genomic analyses identify distinct patterns of selection in domesticated pigs and Tibetan wild boars. Nat Genet, 2013, 45(12): 1431-1438. | [75] | Zong Y, Wang YP, Li C, Zhang R, Chen KL, Ran YD, Qiu JL, Wang DW, Gao CX. Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nat Biotechnol, 2017, 35(5): 438-440. |
|