[1] | Verardo LL, Silva FF, Lopes MS, Madsen O, Bastiaansen JW, Knol EF, Kelly M, Varona L, Lopes PS, Guimar?es SE . Revealing new candidate genes for reproductive traits in pigs: combining bayesian GWAS and functional pathways. Genet Sel Evol, 2016,48:9. | [2] | Felleki M, Lundeheim N . Genetic heteroscedasticity of teat count in pigs. J Anim Breed Genet, 2015,132(5):392-398. | [3] | Robinson GW . Cooperation of signalling pathways in embryonic mammary gland development. Nat Rev Genet, 2007,8(12):963-972. | [4] | Roarty K, Serra R . Wnt5a is required for proper mammary gland development and TGF-β-mediated inhibition of ductal growth. Development, 2007,134(21):3929-3939. | [5] | Eblaghie MC, Song SJ, Kim JY, Akita K, Tickle C, Jung HS . Interactions between FGF and Wnt signals and Tbx3 gene expression in mammary gland initiation in mouse embryos. J Anat, 2004,205(1):1-13. | [6] | Veltmaat JM, Relaix F, Le LT, Kratochwil K, Sala FG, van Veelen W, Rice R, Spencer-Dene B, Mailleux AA, Rice DP . Gli3-mediated somitic Fgf10 expression gradients are required for the induction and patterning of mammary epithelium along the embryonic axes. Development, 2006,133(12):2325-2335. | [7] | Mailleux AA, Savona-Baron B, Ndiaye D, Savona-Baron C, Itoh N, Kato S, Dickson C, Thiery JP, Bellusci S . Role of FGF10/FGFR2b signaling during mammary gland development in the mouse embryo. Development, 2002,129(1):53-60. | [8] | Howard B, Panchal H, McCarthy A, Ashworth A . Identification of the scaramanga gene implicates Neuregulin3 in mammary gland specification. Genes Dev, 2005,19(17):2078-2090. | [9] | Buono KD, Robinson GW, Martin C, Shi S, Stanley P, Tanigaki K, Honjo T, Hennighausen L . The canonical Notch/RBP-J signaling pathway controls the balance of cell lineages in mammary epithelium during pregnancy. Dev Biol, 2006,293(2):565-580. | [10] | Heckman BM, Chakravarty G, Vargo-Gogola T, Gonzales- Rimbau M, Hadsell DL, Lee AV, Settleman J, Rosen JM . Crosstalk between the p190-B RhoGAP and IGF signaling pathways is required for embryonic mammary bud development. Dev Biol, 2007,309(1):137-149. | [11] | Yang ZC, Zhou ZX, Li Z, Dong YZ . Anatomical and histological characteristics of in-verted papilla of pig. Acta Vet Et Zootech Sin, 1999,30(6):519-524. | [11] | 杨志春, 周忠孝, 李照, 董玉珍 . 猪翻乳头的解剖组织学特征的研究与探讨. 畜牧兽医学报, 1999,30(6):519-524. | [12] | Nikitin SV, Kniazev SP, Ermolaev VI . Model of genetic control of the number and location of nipples in domestic pig. Genetika, 2012,48(11):1128-1140. | [13] | Fernández A, Toro M, Rodríguez C, Silió L . Heterosis and epistasis for teat number and fluctuating asymmetry in crosses between Jiaxing and Iberian pigs. Heredity, 2004,93(2):222-227. | [14] | Liu WZ, Zhou ZX . Inheritance and influencing factors of papillary traits in pigs. Swine Prod, 1994, ( 4):33-34. | [14] | 刘文忠, 周忠孝 . 猪乳头性状的遗传及其影响因素. 养猪, 1994, ( 4):33-34. | [15] | Rohrer GA . Identification of quantitative trait loci affecting birth characters and accumulation of backfat and weight in a Meishan-White composite resource population. J Anim Sci, 2000,78(10):2547-2553. | [16] | Geldermann H, Müller E, Moser G, Reiner G, Bartenschlager H, Cepica S, Stratil A, Kuryl J, Moran C, Davoli R, Brunsch C . Genome-wide linkage and QTL mapping in porcine F2 families generated from pietrain, meishan and wild boar crosses. J Anim Breed Genet, 2003,120(6):363-393. | [17] | Ding NS, Guo YM, Knorr C, Ma JW, Mao HR, Lan LT, Xiao SJ, Ai HS, Haley CS, Brenig B, Huang LS . Genome-wide QTL mapping for three traits related to teat number in a white duroc x erhualian pig resource population. Bmc Genet, 2009,10:6. | [18] | Lopes MS, Bastiaansen JW, Harlizius B, Knol EF, Bovenhuis H . A genome-wide association study reveals dominance effects on number of teats in pigs. PLoS One, 2014,9(8):e105867. | [19] | Tan C, Wu Z, Ren J, Huang Z, Liu D, He X, Prakapenka D, Zhang R, Li N, Da Y, Hu X . Genome-wide association study and accuracy of genomic prediction for teat number in Duroc pigs using genotyping-by-sequencing. Genet Sel Evol, 2017,49(1):35. | [20] | Demeure O, Sanchez MP, Riquet J, Iannuccelli N, Demars J, Fève K, Kernaleguen L, Gogué J, Billon Y, Caritez JC, Milan D, Bidanel JP . Exclusion of the swine leukocyte antigens as candidate region and reduction of the position interval for the Sus scrofa chromosome 7 QTL affecting growth and fatness. J Anim Sci, 2005,83(9):1979-1987. | [21] | Sato S, Atsuji K, Saito N, Okitsu M, Sato S, Komatsuda A, Mitsuhashi T, Nirasawa K, Hayashi T, Sugimoto Y, Kobayashi E . Identification of quantitative trait loci affecting corpora lutea and number of teats in a meishan x duroc F2 resource population. J Anim Sci, 2006,84(11):2895-2901. | [22] | Jonas E, Schreinemachers HJ, Kleinw?chter T, Un C, Oltmanns I, Tetzlaff S, Jennen D, Tesfaye D, Ponsuksili S, Murani E, Juengst H, Tholen E, Schellander K, Wimmers K . QTL for the heritable inverted teat defect in pigs. Mamm Genome, 2008,19(2):127-138. | [23] | Barb CR, Hausman GJ, Houseknecht KL . Biology of leptin in the pig. Domest Anim Endocrin, 2001,21(4):297-317. | [24] | de Oliveira Peixoto J, Facioni Guimar?es SE, Sávio Lopes P, Menck Soares MA, Vieira Pires A, Gualberto Barbosa MV, de Almeida Torres R, de Almeida E Silva M . Associations of leptin gene polymorphisms with production traits in pigs. J Anim Breed Genet, 2006,123(6):378-383. | [25] | Dragos-Wendrich M, Moser G, Bartenschlager H, Reiner G, Geldermann H . Linkage and QTL mapping for Sus scrofa chromosome 10. J Anim Breed Genet, 2003,120(s1):82-88. | [26] | Bauman DR, Steckelbroeck S, Penning TM . The roles of aldo-keto reductases in steroid hormone action. Drug News Perspect, 2004,17(9):563-578. | [27] | Nonneman DJ, Wise TH, Ford JJ, Kuehn LA, Rohrer GA . Characterization of the aldo-keto reductase 1C gene cluster on pig chromosome 10: possible associations with reproductive traits. BMC Vet Res, 2006,2:28. | [28] | Jin S, Lee JB, Kang K, Yoo CK, Kim BM, Park HB, Lim HT, Cho IC, Maharani D, Lee JH . The possibility of TBC1D21 as a candidate gene for teat numbers in pigs. Asian-Australas J Anim Sci, 2013,26(10):1374-1378. | [29] | Xu RX, Wei N, Wang Y, Wang GQ, Yang GS, Pang WJ . Association of novel polymorphisms in lymphoid enhancer binding factor 1 (LEF-1) gene with number of teats in different breeds of pig. Asian-Australas J Anim Sci, 2014,27(9):1254-1262. | [30] | Duijvesteijn N, Veltmaat JM, Knol EF, Harlizius B . High-resolution association mapping of number of teats in pigs reveals regions controlling vertebral development. Bmc Genomics, 2014,15:524. | [31] | Rohrer GA, Nonneman DJ . Genetic analysis of teat number in pigs reveals some developmental pathways independent of vertebra number and several loci which only affect a specific side. Genet Sel Evol, 2017,49(1):4. | [32] | Yang J, Huang LS, Yang M, Fan Y, Li L, Fang SM, Deng WJ, Cui LL, Zhang Z, Ai HS, Wu ZF, Gao J, Ren J . Possible introgression of the VRTN mutation increasing vertebral number, carcass length and teat number from Chinese pigs into European pigs. Sci Rep, 2016,6:19240. | [33] | Tetzlaff S, Chomdej S, Jonas E, Ponsuksili S, Murani E, Phatsara C, Schellander K, Wimmers K . Association of parathyroid hormone-like hormone (PTHLH) and its receptor (PTHR1) with the number of functional and inverted teats in pigs. J Anim Breed Genet, 2009,126(3):237-241. | [34] | Chomwisarutkun K, Murani E, Ponsuksili S, Wimmers K . Microarray analysis reveals genes and functional networks relevant to the predisposition to inverted teats in pigs. J Anim Sci, 2011,90(1):1-15. | [35] | Chomwisarutkun K, Murani E, Brunner R, Ponsuksili S, Wimmers K . QTL region-specific microarrays reveal differential expression of positional candidate genes of signaling pathways associated with the liability for the inverted teat defect. Anim Genet, 2012,44(2):139-148. | [36] | Famá F, Cicciú M, Sindoni A, Scarfó P, Pollicino A, Giacobbe G, Buccheri G, Taranto F, Palella J, Gioffré-Florio M . Prevalence of ectopic breast tissue and tumor: a 20-Year single center experience. Clin Breast Cancer, 2016,16(4):e107-e112. | [37] | Hiremath B, Subramaniam N, Chandrashekhar N . Giant accessory breast: a rare occurrence reported, with a review of the literature. BMJ Case Rep, 2015, 2015: bcr2015210918. | [38] | Schaid DJ, Chen W, Larson NB . Larson. From genome- wide associations to candidate causal variants by statistical fine-mapping. Nat Rev Genet, 2018,19(8):491-504. |
|