遗传 ›› 2020, Vol. 42 ›› Issue (9): 817-831.doi: 10.16288/j.yczz.20-097
• 综述 • 下一篇
收稿日期:
2020-04-09
修回日期:
2020-07-23
出版日期:
2020-09-20
发布日期:
2020-08-04
通讯作者:
李春燕
E-mail:lichunyan@buaa.edu.cn
作者简介:
刘倩,在读硕士研究生,专业方向:生物医学工程。E-mail: 基金资助:
Received:
2020-04-09
Revised:
2020-07-23
Online:
2020-09-20
Published:
2020-08-04
Contact:
Li Chunyan
E-mail:lichunyan@buaa.edu.cn
Supported by:
摘要:
增强子是一类增强靶基因转录活性的DNA顺式作用元件。但是增强子与靶基因的方向和距离不确定,大大增加了研究增强子调控的靶基因及其作用机制的困难。已有大量研究显示,增强子的突变或功能异常与疾病发生发展相关;仅有少量研究报道增强子通过促进靶基因的表达,引发癌症或产生抗药性。目前与癌症发生发展和在癌症治疗过程中抗药性产生相关的增强子尚未得到充分鉴定,这些增强子的调控机制也未得到充分解析。本文对目前可在全基因组水平上预测和鉴定增强子以及解析增强子调控机制的方法进行总结和对比,并对近几年增强子在肿瘤诊断、治疗和发生发展机制中的研究进展进行综述。期望本文为筛选与癌症发生发展相关的增强子和解析这些增强子的调控机制提供参考,为提高癌症的诊断和制定癌症的治疗策略提供新的视角。
刘倩, 李春燕. 增强子的鉴定及其在肿瘤研究中的应用[J]. 遗传, 2020, 42(9): 817-831.
Qian Liu, Chunyan Li. The identification of enhancers and its application in cancer studies[J]. Hereditas(Beijing), 2020, 42(9): 817-831.
表1
增强子预测和功能解析的常用方法"
方法 | 描述 | 优势 | 局限性 |
---|---|---|---|
ChIP-Seq | 一种将染色质免疫沉淀与高通量测序技术相结合所产生的技术 | 高分辨率、低噪、高覆盖率、样本需求较少 | 与ChIP芯片技术相比成本较高,数据质量依赖抗体质量 |
DNase-Seq | 一种结合高通量测序技术鉴定全基因组内DNase I超敏位点的方法,进行全基因组假定增强子等调控区域的预测 | 提供的信息比ChIP-Seq,更广泛 | 样本需求较大,重复性较差;DNase I对DNA的切割具有序列依赖性,测序误差较大;不能保证切割后的结果,就完全是蛋白质覆盖的区域 |
ATAC-Seq | 利用转座酶研究染色质可进入性的高通量测序技术,利用DNA转座酶技术实现染色质可及性分析 | 样本需求量少,灵敏度高,操作简单,耗时短,实验重复性好,能同时揭示开放染色质的基因组位置,DNA结合蛋白,转录结合位点的相互作用 | 有一半DNA片段无法利用,无法进行PCR富集,DNA剪切效果仍需优化 |
RNA-Seq | 一种全基因组水平的基因表达差异研究,用于分析基因表达水平以了解细胞在不同状态下的基因表达差异 | 高通量,高灵敏度,可重复性高,检测范围广 | 检测细胞内累积的RNA,包括来自核糖体线粒体的RNA,影响RNA表达水平的准确性 |
3C | 一种结合免疫共沉淀和PCR扩增研究两个位点之间的相互作用的技术 | — | 覆盖范围通常小于1 Mb;只能研究点对点的互作方式 |
4C | 在全基因组范围研究一个特定基因与所有互作基因之间的相互作用的高通量测序技术 | 覆盖全基因组范围 | 只能研究与一个特定基因互作的所有基因 |
5C | 研究多基因与多基因之间的相互作用高通量测序技术 | 可以研究多个位点与其相互作用的所有位点之间的相互作用 | 覆盖范围有限,通常小于1 Mb |
Hi-C | 在全基因组范围研究所有染色体和染色体外的相互作用的高通量测序技术 | 覆盖全基因组范围,操作时间短,花费少 | 分辨率低,噪声高 |
ChIA-PET | 一种整合了免疫共沉淀、染色质铰链、双末端标签及高通量测序的技术,可以在全基因组范围研究染色质的相互作用 | 能够确定蛋白质结合位点间的相互作用;使用超声打断DNA-蛋白质复合体,避免使用限制性内切酶引入染色质随机连接 | 无法检测出不依赖蛋白质因子的染色体相互作用;抗体的纯度、质量、特异性要求较高 |
CRISPR | 将Cas9核酸酶与向导RNA(gRNA)结合,可在基因组的特定位点切割,从而实现基因的移除、添加或替换 | 在内源性环境中研究增强子,对靶向位点进行修饰,操作简单、快速 | 易脱靶,有效切割效率低 |
图1
增强子与超级增强子的结构特征和功能 A:增强子的结构特征和功能。增强子位于染色质疏松的区域,平均长约300 bp。增强子区域的组蛋白富集H3K4me1和H3K27ac修饰,暴露的DNA序列招募并结合转录因子,转录因子招募Mediator复合体介导增强子与RNA聚合酶Ⅱ的相互作用。增强子在RNA聚合酶II的介导下双向转录eRNA。增强子区域和启动子区域形成三维环状结构相互作用,增强靶基因的转录水平。B:超级增强子的结构特征与功能。超级增强子是由多个具有转录活性的增强子串联而成,平均长约20 kb。与增强子相比,超级增强子区域组蛋白的H3K4me1和H3K27ac修饰更加富集,暴露的DNA序列结合更多的转录因子,转录因子招募更多的Mediator复合体介导增强子与RNA聚合酶Ⅱ的相互作用。暴露的超级增强子序列通过结合RNA聚合酶II双向转录出超级增强子RNA。超级增强子区域与启动子区域同样形成三维环状结构相互作用,但促进靶基因转录的效果更为显著(与A图比较,启动子下游的线更粗)。"
[1] | Zhang Y, Xu XF, Guo CY . The regulation of sonic hedgehog gene in the development process. Prog Mod Biomed, 2014,14(2):358-360. |
张艳, 徐选福, 郭传勇 . Sonic Hedgehog基因及其在发育过程中的调控作用. 现代生物医学进展, 2014,14(2):358-360. | |
[2] |
Bunney PE, Zink AN, Holm AA, Billington CJ, Kotz CM . Orexin activation counteracts decreases in nonexercise activity thermogenesis (NEAT) caused by high-fat diet. Physiol Behav, 2017,176(1):139-148.
doi: 10.1016/j.physbeh.2017.03.040 |
[3] |
Chapel-Fernandes S, Jordier F, Lauro F, Maitland N, Chiaroni J, De Micco P, Mannoni P, Bagnis C . Use of the PSA enhancer core element to modulate the expression of prostate- and non-prostate-specific basal promoters in a lentiviral vector context. Cancer Gene Ther, 2006,13(10):919-929.
pmid: 16741521 |
[4] |
Gilbert L A, Horlbeck MA, Adamson B, Villalta JE, Chen YW, Whitehead EH, Guimaraes C, Panning B, Ploegh HL, Bassik MC, Qi LS, Kampmann M, Weissman JS . Genome- scale CRISPR-mediated control of gene repression and activation. Cell, 2014,159(3):647-661.
pmid: 25307932 |
[5] | Tang LD, Wu N, Jin Y . Enhancer hijacking: a new direction in the study of tumorigenesis. Int J Genet, 2018,41(6):478-482. |
汤柳笛, 吴楠, 金焰 . 增强子劫持:研究肿瘤发生机制的新方向. 国际遗传学杂志, 2018,41(6):478-482. | |
[6] |
Abraham BJ, Hnisz D, Weintraub AS, Kwiatkowski N, Li CH, Li Z, Weichert-Leahey N, Rahman S, Liu Y, Etchin J, Li B, Shen S, Lee TI, Zhang J, Look AT, Mansour MR, Young RA . Small genomic insertions form enhancers that misregulate oncogenes. Nat Commun, 2017,8(15797):1-12.
doi: 10.1038/s41467-016-0009-6 |
[7] |
Grosschedl R, Birnstiel ML . Spacer DNA sequences upstream of the T-A-T-A-A-A-T-A sequence are essential for promotion of H2A histone gene transcription in vivo. Proc Natl Acad Sci USA, 1980,77(12):7102-7106.
pmid: 6938957 |
[8] |
Benoist C, Chambon P . In vivo sequence requirements of the SV40 early promotor region. Nature, 1981,290(5804):304-310.
doi: 10.1038/290304a0 |
[9] | Zhou Y, Shi XM, Han S, Guo M, Wu YX, Wang JX, Jin ZJ . Research progess of super enhancer. J Int Repord Heal/Fam Plan, 2017,36(2):137-141, 159. |
周洋, 施晓敏, 韩澍, 郭猛, 吴玉仙, 王金兴, 金志军 . 超级增强子的发现与研究进展. 国际生殖健康/计划生育杂志, 2017,36(2):137-141, 159. | |
[10] | Xie JH, Sun Y, Wang S, Tian XH, Cao JH . Functional identification of enhancer and its research progress in agricultural animals. Chin J Cell Biol, 2019,41(7):1395-1400. |
谢骏辉, 孙艳, 王昇, 田小欢, 曹建华 . 增强子功能鉴定及其在农业动物中的研究进展. 中国细胞生物学学报, 2019,41(7):1395-1400. | |
[11] | Yan Q, Zhou XQ, Xue W, Dai Y . Advances in the relationship between epigenetic DNA methylation and histone modification with diseases. Med Recap, 2017,23(16):3160-3163, 3169. |
晏强, 周献青, 薛雯, 戴勇 . 表观遗传DNA甲基化和组蛋白修饰与疾病关系的研究进展. 医学综述, 2017,23(16):3160-3163, 3169. | |
[12] |
Bulger M, Groudine M . Functional and mechanistic diversity of distal transcription enhancers. Cell, 2011,144(3):327-339
pmid: 21295696 |
[13] | Wu ZQ, Mi ZY . Research progress of super enhancer in cancer. Hereditas(Beijing), 2019,41(1):41-51. |
吴志强, 米泽云 . 超级增强子在肿瘤研究中的进展. 遗传, 2019,41(1):41-51. | |
[14] | DI Micco R, Fontanals-Cirera B, Low V, Ntziachristos P, Yuen SK, Lovell CD, Dolgalev I, Yonekubo Y, Zhang GT, Rusinova E, Gerona-Navarro G, Cañamero M, Ohlmeyer M, Aifantis I, Zhou MM, Tsirigos A, Hernando E . Control of embryonic stem cell identity by BRD4-dependent transcriptional elongation of super-enhancer-associated pluripotency genes. Cell, 2014,9(1):234-247. |
[15] |
Ing-Simmons E, Seitan VC, Faure AJ, Flicek P, Carroll T, Dekker J, Fisher AG, Lenhard B, Merkenschlager M . Spatial enhancer clustering and regulation of enhancer- proximal genes by cohesin. Genome Res, 2015,25(4):504-513.
doi: 10.1101/gr.184986.114 |
[16] |
Whyte WA, Orlando DA, Hnisz D, Abraham BJ, Lin CY, Kagey MH, Rahl PB, Lee TI, Young RA . Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell, 2013,153(2):307-319.
doi: 10.1016/j.cell.2013.03.035 |
[17] | Sun CB, Zhang X . Advance in the research on super- enhancer. Hereditas(Beijing), 2016,38(12):1056-1068. |
孙长斌, 张曦 . 超级增强子研究进展. 遗传, 2016,38(12):1056-1068. | |
[18] |
Hnisz D, Abraham BJ, Lee TI, Lau A, Saint-André V, Sigova AA, Hoke H, Young RA . Transcriptional super- enhancers connected to cell identity and disease. Cell, 2013,155(4):1-24.
doi: 10.1016/j.cell.2013.09.005 |
[19] |
Andersson1 R, Gebhard C, Miguel-Escalada I, Hoof I, Bornholdt J, Boyd M, Chen Y, Zhao XB, Schmidl C, Suzuki T, Ntini E, Arner E, Valen E, Li K, Schwarzfischer L, Glatz D, Raithel J, Lilje B, Rapin N, Bagger FO, Jørgensen M, Andersen PR, Bertin N, Rackham O, Burroughs AM, Baillie JK, Ishizu Y, Shimizu Y, Furuhata E, Maeda S, Negishi Y, Mungall CJ, Meehan TF, Lassmann T, Itoh M, Kawaji H, Kondo N, Kawai J, Lennartsson A, Daub CO, Heutink P, Hume DA, Heick Jensen TH, Suzuki H, Hayashizaki Y, Muller F, R.R. Forrest A, Carninci P, l Rehli M, Sandelin A. An atlas of active enhancers across human cell types and tissues. Nature, 2014,507(7493):455-461.
doi: 10.1038/nature12787 |
[20] |
Orlando V, Strutt H, Paro R . Analysis of chromatin structure by in vivo formaldehyde cross-linking. Methods, 1997,11(2):205-214.
doi: 10.1006/meth.1996.0407 pmid: 8993033 |
[21] |
Pillai S, Dasgupta P, Chellappan SP . Chromatin immunoprecipitation assays: analyzing transcription factor binding and histone modifi cations in vivo. Methods in Molecular Biology, 2015,1288:429-446.
pmid: 25827895 |
[22] | Yang W, Liu RS . Introduction of ChIP-Seq technology and data analysis. Henan Sci, 2014,32(8):1440-1444. |
杨薇, 刘若水 . 染色质免疫共沉淀-测序(ChIP-Seq)技术及数据分析方法介绍. 河南科学, 2014,32(8):1440-1444. | |
[23] |
Visel A, Blow MJ, Li ZR, Zhang T, Akiyama JA, Holt A, Plajzer-Frick I, Shoukry M, Wright C, Chen F, Afzal V, Ren B, Rubin EM, Pennacchio LA . ChIP-seq accurately predicts tissue-specific activity of enhancers. Nature, 2009,457(7231):854-858.
doi: 10.1038/nature07730 pmid: 19212405 |
[24] | Xiao T, Zhou J, Fu JJ F . Research progress in histone modifications as epigenetic tumor markers. J Southwest Med Univ, 2019,42(3):284-288. |
肖婷, 周菊, 傅俊江 . 组蛋白修饰作为表观遗传肿瘤标志物的研究进展. 西南医科大学学报, 2019,42(3):284-288. | |
[25] |
Heintzman ND, Stuart RK, Hon G, Fu YT, Ching CW, Hawkins RD, Barrera LO, Van Calcar S, Qu CX, Ching KA, Wang W, Weng ZP, Green RD, Crawford GE, Ren B . Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat Genet, 2007,39(3):311-318.
doi: 10.1038/ng1966 pmid: 17277777 |
[26] |
Creyghton MP, Cheng AW, Welstead GG, Kooistra T, Carey BW, Steine EJ, Hanna J, Lodato MA, Frampton GM, Sharp PA, Boyer LA, Young RA, Jaenisch R . Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc Natl Acad Sci USA, 2010,107(50):21931-21936.
pmid: 21106759 |
[27] |
Bonn S, Zinzen RP, Girardot C, Gustafson EH, Perez- Gonzalez A, Delhomme N, Ghavi-Helm Y, Wilczyński B, Riddell A, Furlong EEM . Tissue-specific analysis of chromatin state identifies temporal signatures of enhancer activity during embryonic development. Nat Genet, 2012,44(2):148-156.
pmid: 22231485 |
[28] |
Taylor GCA, Eskeland R, Hekimoglu-Balkan B, Pradeepa MM, Bickmore WA . H4K16 acetylation marks active genes and enhancers of embryonic stem cells, but does not alter chromatin compaction. Genome Res, 2013,23(12):2053-2065.
doi: 10.1101/gr.155028.113 |
[29] |
Pradeepa MM, Grimes GR, Kumar Y, Olley G, Taylor GCA, Schneider R, Bickmore WA . Histone H3 globular domain acetylation identifies a new class of enhancers. Nat Genet, 2016,48(6):681-686.
pmid: 27089178 |
[30] | Yang LL, Jiang T, Sui YX, Shi WJ, Song YB, Tian YP, Zhang PJ . DNA methylation detection technology. Labeled Immunoassays & Clin Med, 2020,27(5):898-904. |
杨林林, 蒋涛, 隋亚鑫, 史文杰, 宋永波, 田亚军, 张朋军 . DNA甲基化检测技术. 标记免疫分析与临床, 2020,27(5):898-904. | |
[31] | Cao L, Guo LJ, Guo XJ, Gong Y, Li F . New path of cancer liquid biopsy:DNA methylation detection by digital PCR. Prog Biochem Biophys, 2019,46(11):1085-1100. |
曹雷, 郭丽娟, 郭晓锦, 巩燕, 李菲 . 癌症液体活检新思路:数字PCR检测DNA甲基化. 生物化学与生物物理进展, 2019,46(11):1085-1100. | |
[32] | Yan JG, Fu HY, Shen JZ, Zhou HR, Zhang YY, Huang JL, Chen CJ, Huang SH . Application of bisulfite sequencing pcr in detecting the abnormal methylation of suppressor gene of Wnt signaling pathway in acute promyelocytic leukemia. J Exp Hematol, 2016,24(5):1299-1304. |
晏建国, 付海英, 沈建箴, 周华蓉, 张媛媛, 黄劲龙, 陈聪杰, 黄思晗 . 重亚硫酸氢盐测序法检测Wnt信号通路抑制基因在急性早幼粒细胞白血病细胞中甲基化变化. 中国实验血液学杂志, 2016,24(5):1299-1304. | |
[33] |
Ghisletti S, Barozzi I, Mietton F, Polletti S, De Santa F, Venturini E, Gregory L, Lonie L, Chew A, Wei CL, Ragoussis J, Natoli G . Identification and characterization of enhancers controlling the inflammatory gene expression program in macrophages. Immunity, 2010,32(3):317-328.
doi: 10.1016/j.immuni.2010.02.008 |
[34] | Kim T, Hemberg M, Gray JM, Costa AM, Bear DM, Wu J, Harmin DA, Laptewicz M, Barbara-haley K, Kuersten S, Markenscoff-papadimitriou E, Kuhl D, Bito H, Worley PF, Kreiman G, Greenberg ME,. Widespread transcription at neuronal activity-regulated enhancers. Nature, 2010,465(7295):182-187. |
[35] | Chen H, Li CY, Peng XX, Zhou ZC, Weinstein JN, Liang H . A Pan-Cancer analysis of enhancer expression in nearly 9000 patient samples. Cell, 2018,173(3):386-399. |
[36] | Zhang Z, Lee J, Ruan H, Ye YQ, Krakowiak J, Hu QS, Xiang Y, Gong J, Zhou BY, Wang L, Lin CR, Diao LX, Mills GB, Li WB, Han L . Transcriptional landscape and clinical utility of enhancer RNAs for eRNA-targeted therapy in cancer. Nat Commun, 2019,10(1):4562. |
[37] | Guo XL, Zhang QF, Ye QS, Mo ZT, Li WN, Gao SY . Construction of CRISPR/Cas9 vectors targeting to ezrin enhancer key region. J Biol, 2017,34(6):19-22. |
郭晓龙, 张青峰, 野庆松, 莫镇涛, 李文娜, 高书颖 . 靶向ezrin增强子关键区的CRISPR/Cas9载体的构建. 生物学杂志, 2017,34(6):19-22. | |
[38] | Korkmaz G, Lopes R, Ugalde AP, Nevedomskaya E, Han RQ, Myacheva K, Zwart W, Elkon R, Agami R . Functional genetic screens for enhancer elements in the human genome using CRISPR-Cas9. Nat Biotechnol, 2016,34(2):192-198. |
[39] | Mo WH, Zhang HQ, Zhao ZF, Shi JD, Lu WG . The role and mechanism of enhancer containing risk SNP rs10486567 in prostate cancer. Acta Sci Natl Univ Nankai (Nat Sci Ed), 2018,51(2):9-13. |
莫文慧, 张浩琪, 赵忠芳, 石建党, 吕万革 . 含有前列腺癌风险性SNPrs10486567位点潜在增强子座位在前列腺癌细胞中功能的研究. 南开大学学报(自然科学版), 2018,51(2):9-13. | |
[40] | Zhang XY, Choi PS, Francis JM, Imielinski M, Watanabe H, Cherniack AD, Meyerson M . Identification of focally amplified lineage-specific super-enhancers in human epithelial cancers. Nat Genet, 2016,48(2):176-182. |
[41] | Wang J, Zhao ZW, Ma LN, Ma Q . Research progress on enhancer forecast and targeted sequencing technology. Chin Anim Husb Vet Med, 2019,46(5):1308-1315. |
王锦, 赵正伟, 马丽娜, 马青 . 增强子预测及靶向测序技术研究进展. 中国畜牧兽医, 2019,46(5):1308-1315. | |
[42] | Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA . Repurposing CRISPR as an RNA- Guided platform for sequence-specific control of gene expression. Cell, 2013,152(5):1173-1183. |
[43] | Thakore PI, D'Ippolito AM, Song YL, Safi A, Shivakumar NK, Kabadi AM, Reddy TE, Crawford GE, Gersbach CA. Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements. Nat Methods, 2015,12(12):1143-1149. |
[44] | Gao XF, Tsang JCH, Gaba F, Wu DH, Lu LM, Liu PT . Comparison of TALE designer transcription factors and the CRISPR/dCas9 in regulation of gene expression by targeting enhancers. Nucleic Acids Res, 2014,42(20):e155. |
[45] | Xu L, Zhao LX, Gao YD, Xu J, Han RZ . Empower multiplex cell and tissue-specific CRISPR-mediated gene manipulation with self-cleaving ribozymes and tRNA. Nucleic Acids Res, 2017,45(5):e28. |
[46] | Jiang YY, Lin DC, Mayakonda A, Hazawa M, Ding L W, Chien WW, Xu L, Chen Y, Xiao JF, Senapedis W, Baloglu E, Kanojia D, Shang L, Xu X, Yang H, Tyner JW, Wang MR, Koeffler HP . Targeting super-enhancer-associated oncogenes in oesophageal squamous cell carcinoma. Gut, 2017,66(8):1358-1368. |
[47] | Shioga T, Kondo R, Ogasawara S, Akiba J, MizuochiI S, Kusano H, Mihara Y, Tanigawa M, Kinjyo Y, Naito Y, Kuromatsu R, Nakashima O, Yano H,. Usefulness of tumor tissue biopsy for predicting the biological behavior of hepatocellular carcinoma. Anticancer Research, 2020,40(7):4105-4113. |
[48] | Dong Y, Wang Z, Shi QH . Liquid biopsy based single-cell transcriptome profiling characterizes heterogeneity of disseminated tumor cells from lung adenocarcinoma. Proteomics, 2020,20(13):1-7. |
[49] | Sur I, Taipale J . The role of enhancers in cancer. Nat Rev Cancer, 2016,16(8):483-493. |
[50] | Snyder MW, Kircher M, Hill AJ, Daza RM, Shendure J . Cell-free DNA comprises an in vivo nucleosome footprint that informs its tissues-of-origin. Cell, 2016,164(1-2):57-68. |
[51] | Bastaki S, Irandoust M, Ahmadi A, Hojjat-Farsangi M, Ambrose P, Hallaj S, Edalati M, Ghalamfarsa G, Azizi G, Yousefi M, Chalajour H, Jadidi-Niaragh F . PD-L1/PD-1 axis as a potent therapeutic target in breast cancer. Life Sci, 2020,247:117437. |
[52] | Chen LX, Cao LX . MiR-150 inhibits cell proliferation through regulating c-Myb in human chronic myeloid leukemia cell line K562. Basic Clin Med, 2019,39(9):1259-1264. |
陈连香, 曹丽霞 . miR-150通过调节c-Myb抑制人慢性髓系白血病细胞系K562增殖. 基础医学与临床, 2019,39(9):1259-1264. | |
[53] | Tak YG, Hung Y, Yao LJ, Grimmer MR, Do A, Bhakta MS, O’Geen H, Segal DJ, Farnham PJ Effects on the transcriptome upon deletion of a distal element cannot be predicted by the size of the H3K27Ac peak in human cells. Nucleic Acids Res, 2016,44(9):4123-4133. |
[54] | Mansour MR, Abraham BJ, Anders L, Berezovskaya A, Gutierrez A, Durbin AD, Etchin J, Lee L, Sallan SE, Silverman LB, Loh ML, Hunger SP, Sanda T, Young RA, Look AT . An oncogenic super-enhancer formed through somatic mutation of a noncoding intergenic element. Science, 2014,346(6215):1373-1377. |
[55] | Luo W, Jiang QH, Liu JM, Hu HW, Wen L, Wei XF, Liu R, Wu ZJ . Preparation of artificial transcription factors to HBV and its targeted inhibitory effect on activity of HBV enhancer. Acta Acad Med Mil Tert, 2014,36(5):450-455. |
罗伟, 蒋清虎, 刘济铭, 胡慧雯, 温路, 魏续福, 刘锐, 吴忠均 . HBV人工转录因子的制备及其靶向抑制HBV增强子活性研究. 第三军医大学学报, 2014,36(5):450-455. | |
[56] | Korbel JO, Campbell PJ . Criteria for inference of chromothripsis in cancer genomes. Cell, 2013,152(6):1226-1236. |
[57] | Paulsen T, Kumar P, Koseoglu MM, Dutta A . Discoveries of extrachromosomal circles of DNA in normal and tumor cells. Trends Genet, 2018,34(4):270-278. |
[58] | Turner KM, Deshpande V, Beyter D, Koga T, Rusert J, Lee C, Li B, Arden K, Ren B, Nathanson DA, Kornblum HI, Taylor MD, Kaushal S, Cavenee WK, Wechsler-Reya R, Furnari FB, Vandenberg SR, Rao PN, Wahl GM, Bafna V, Mischel PS . Extrachromosomal oncogene amplification drives tumour evolution and genetic heterogeneity. Nature, 2017,543(7643):122-125. |
[59] | Wu SH, Turner KM, Nguyen N, Raviram R, Erb M, Santini J, Luebeck J, Rajkumar U, Diao YR, Li B, Zhang WJ, Jameson N, Corces MR, Granja JM, Chen XQ, Coruh C, Abnousi A, Houston J, Ye Z, Hu R, Yu M, Kim H, Law JA, Verhaak RGW, Hu M, Furnari FB, Chang HY, Ren B, Bafna V, Mischel PS . Circular ecDNA promotes accessible chromatin and high oncogene expression. Nature, 2019,575(7784):699-703. |
[60] | Morton AR, Dogan-artun N, Faber ZJ, Macleod G, Bartels CF, Piazza MS, Allan KC, Mack SC, Wang XX, Gimple RC, Wu QL, Rubin BP, Shetty S, Angers S, Dirks PB, Sallari RC, Lupien M, Rich JN, Scacheri PC,. Functional enhancers shape extrachromosomal oncogene amplifications. Cell, 2019, 179(6): 1330-1341.e13. |
[61] | Hanahan D, Weinberg RA . Hallmarks of cancer: The next generation. Cell, 2011,144(5):646-674. |
[62] | Hsieh CL, Fei T, Chen YW, Li TT, Gao YF, Wang XD, Sun T, Sweeney CJ, Lee GSM, Chen SY, Balk SP, Liu XS, Brown M, Kantoff PW . Enhancer RNAs participate in androgen receptor-driven looping that selectively enhances gene activation. Proc Natl Acad Sci USA, 2014,111(20):7319-7324. |
[63] | Lovén J, Hoke HA, Lin CY, Lau A, Orlando DA, Vakoc CR, Bradner JE, Lee TI, Young RA . Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell, 2013,153(2):320-334. |
[64] | Jiang Y, Jiang YY, Xie JJ, Mayakonda A, Hazawa M, Chen L, Xiao JF, Li CQ, Huang ML, Ding LW, Sun QY, Xu L, Kanojia D, Jeitany M, Deng JW, Liao LD, Soukiasian HJ, Berman BP, Hao JJ, Xu LY, Li EM, Wang MR, Bi XG, Lin DC, Koeffler HP . Co-activation of super- enhancer-driven CCAT1 by TP63 and SOX2 promotes squamous cancer progression. Nat Commun, 2018,9(1):3619. |
[65] | Peng L, Jiang BY, Yuan XQ, Qiu YT, Peng JY, Huang YS, Zhang CY, Zhang Y, Lin ZY, Li JS, Yao WC, Deng WX, Zhang YQ, Meng M, Pan X, Li CQ, Yin D, Bi XY, Li GC, Lin DC . Super-enhancer-associated long noncoding RNA HCCL5 is activated by ZEB1 and pro motes the malignancy of hepatocellular carcinoma. Cancer Res, 2019,79(3):572-584. |
[66] | Hnisz D, Abraham BJ, Lee TI, Lau A, Saint-André V, Sigova AA, Hoke HA, Young RA . Super-enhancers in the control of cell identity and disease. Cell, 2013,155(4):934-947. |
[67] | Wang GR . The research of tumor specific activated super enhancer PLAU_SE [Dissertation]. Harbin Inst Technol, 2018. |
王冠儒 . 肿瘤特异超级增强子PLAU_SE及其组分的鉴定和功能研究[学位论文]. 哈尔滨工业大学, 2018. |
[1] | 孙清玙, 周阳, 杜丽娟, 张梦珂, 王家乐, 任媛媛, 刘芳. 巨噬细胞相关基因与非小细胞肺癌预后和肿瘤微环境的分析[J]. 遗传, 2023, 45(8): 684-699. |
[2] | 严程浩, 白韦钰, 张智猛, 沈俊岭, 王友军, 孙建伟. STIM1在肿瘤发生及转移中的研究进展[J]. 遗传, 2023, 45(5): 395-408. |
[3] | 马春辉, 胡海旭, 张丽娟, 刘毅, 刘天懿. 用于循环肿瘤细胞定量分析的CK19数字PCR检测方法的建立及性能验证[J]. 遗传, 2023, 45(3): 250-260. |
[4] | 常栋, 刘享享, 刘睿, 孙建伟. FSCN1在乳腺癌发生发展中的作用及其调控机制[J]. 遗传, 2023, 45(2): 115-127. |
[5] | 陈秀丽, 黄海燕, 吴强. 靶向敲除β-珠蛋白基因座控制区增强子HS2对K562细胞转录组的影响[J]. 遗传, 2022, 44(9): 783-797. |
[6] | 郝庆刚, 孙凤桂, 严程浩, 孙建伟. MT1-MMP在肿瘤转移中的研究进展[J]. 遗传, 2022, 44(9): 745-755. |
[7] | 徐思远, 寿佳, 吴强. HS5-1增强子eRNA PEARL对原钙粘蛋白α基因簇的表达调控[J]. 遗传, 2022, 44(8): 695-764. |
[8] | 赵岩, 王晨鑫, 杨天明, 李春爽, 张丽宏, 杜冬妮, 王若曦, 王静, 魏民, 巴雪青. DNA氧化损伤8-羟鸟嘌呤与肿瘤的发生发展[J]. 遗传, 2022, 44(6): 466-477. |
[9] | 漆思晗, 王棨临, 张俊有, 刘倩, 李春燕. 增强子调控癌症发生发展的机制研究[J]. 遗传, 2022, 44(4): 275-288. |
[10] | 王雪倩, 张庆珍, 程鹏, 董婷婷, 李卫国, 周喆, 王升启. 中国汉族人群66个InDel基因座的遗传多态性[J]. 遗传, 2022, 44(4): 335-345. |
[11] | 万星琦, 魏婉珍, 郭胜良, 崔一笑, 景雪莹, 黄露杰, 马捷. BMP2基因远程调控元件的功能分析[J]. 遗传, 2022, 44(12): 1141-1147. |
[12] | 王玲, 李金环, 黄海燕, 吴强. 串联反向CTCF位点的系列删除揭示增强子调控HOXD基因簇表达的平衡[J]. 遗传, 2021, 43(8): 775-791. |
[13] | 寇艳妮, 岑山, 李晓宇. LINE-1在肿瘤早期诊断和治疗中的研究与应用[J]. 遗传, 2021, 43(6): 571-579. |
[14] | 王卓, 申笑涵, 施奇惠. 单细胞基因组测序技术新进展及其在生物医学中的应用[J]. 遗传, 2021, 43(2): 108-117. |
[15] | 刘志勇, 任贺, 陈冲, 张京晶, 张晓梦, 石妍, 石林玉, 陈滢, 程凤, 贾莉, 陈曼, 范庆炜, 张家榕, 李万婷, 王萌春, 任子林, 刘雅诚, 倪铭, 孙宏钰, 严江伟. 基于有限突变模型和大规模数据的19个常染色体STR的实际突变率研究[J]. 遗传, 2021, 43(10): 949-961. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: